分析 將P的坐標代入f(x),可得a的值,求出f(x)的導(dǎo)數(shù),可得切線的斜率,運用點斜式方程可得切線的方程.
解答 解:函數(shù)f(x)=ax3-2x的圖象過點P(-1,4),
可得-a+2=4,解得a=-2,
則f(x)=-2x3-2x,
f(x)的導(dǎo)數(shù)為f′(x)=-6x2-2,
則曲線y=f(x)在點P處的切線斜率為-8,
可得曲線y=f(x)在點P處的切線方程為y-4=-8(x+1),
即為8x+y+4=0.
故答案為:8x+y+4=0.
點評 本題考查導(dǎo)數(shù)的運用:求切線方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用點斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{13}$ | C. | 13 | D. | $\sqrt{7-2\sqrt{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,3,4,5} | B. | {-1,0} | C. | {-1,0,1,2} | D. | { 2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com