15.已知A(3,2),B(-1,5),則與向量$\overrightarrow{AB}$同向的單位向量坐標(biāo)是$(-\frac{4}{5},\frac{3}{5})$.

分析 利用與向量$\overrightarrow{AB}$同向的單位向量=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$即可得出.

解答 解:$\overrightarrow{AB}$=(-4,3),
與向量$\overrightarrow{AB}$同向的單位向量=$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$=$\frac{(-4,3)}{\sqrt{{4}^{2}+{3}^{2}}}$=$(-\frac{4}{5},\frac{3}{5})$.
故答案為:=$(-\frac{4}{5},\frac{3}{5})$.

點(diǎn)評(píng) 本題考查了單位向量、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知角α的終邊經(jīng)過(guò)點(diǎn)P(-1,1),則cosα的值為( 。
A.1B.-1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在極坐標(biāo)系中,圓心在($\sqrt{2}$,π)且過(guò)極點(diǎn)的圓的方程為( 。
A.ρ=2$\sqrt{2}$cos θB.ρ=-2$\sqrt{2}$cos θC.ρ=2$\sqrt{2}$sin θD.ρ=-2$\sqrt{2}$sin θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知向量$\overrightarrow a$=(x,1),$\overrightarrow b$=(1,-1),若$\overrightarrow a$∥$\overrightarrow b$,則x=( 。
A.-1B.1C.±1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.有5名同學(xué)站成一排照相,則甲與乙相鄰的不同排法種數(shù)有( 。
A.8B.12C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若實(shí)數(shù)a>1,則函數(shù)f(x)=loga(x2-5x+6)的單調(diào)減區(qū)間為(  )
A.($\frac{5}{2}$,+∞)B.(3,+∞)C.(-∞,$\frac{5}{2}$)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB.
(1)求證:AB⊥DE;
(2)求直線EC與平面ABE所成角的正弦值;
(3)線段EA上是否存在點(diǎn)F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{{{x^2}-4x+5}}{x}$(x>0),當(dāng)且僅當(dāng)x=$\sqrt{5}$時(shí),f(x)取到最小值為2$\sqrt{5}$-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=2+log3x(1≤x≤9),函數(shù)g(x)=f2(x)+f(x2),求函數(shù)g(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案