【題目】某中學(xué)學(xué)校對高三年級文科學(xué)生進行了一次自主學(xué)習(xí)習(xí)慣的自評滿意度的調(diào)查,按系統(tǒng)抽樣方法得到了一個自評滿意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).
(1)完善頻率分布直方圖(需寫出計算過程);
(2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1和m2,并指出選用哪一個數(shù)據(jù)來估計總體的中位數(shù)更合理(需要敘述理由).
【答案】(1)作圖見解析(2)m174;m2=73.5;用莖葉圖得到的中位數(shù)估計總體的中位數(shù)更合理,詳見解析
【解析】
(1)計算每個范圍的頻率,再完善頻率分布圖得到答案。
(2)分別計算中位數(shù),判斷莖葉圖的中位數(shù)更合理。
(1)∵抽取的成績在[50,60)的試卷份數(shù)是2份,頻率是0.008×10=0.08,
∴一共抽取了25人.
∴抽取的成績在[80,90)的試卷份數(shù)為:25﹣2﹣7﹣10﹣2=4份,
頻率為0.16,0.016;
成績在[70,80)的頻率為0.4,0.04;
成績在[60,70)的頻率為0.28,0.028;
畫出頻率分布直方圖如圖所示;
(2)根據(jù)莖葉圖計算樣本數(shù)據(jù)的中位數(shù)是
根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)是m2=70+1073.5;
根據(jù)統(tǒng)計學(xué)原理知莖葉圖保留了原始數(shù)據(jù),它的中位數(shù)估計總體的中位數(shù)更合理.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,平面PAC⊥平面ABC,AB=BC,PA⊥PC.點E,F,O分別為線段PA,PB,AC的中點,點G是線段CO的中點.
(1)求證:FG∥平面EBO;
(2)求證:PA⊥BE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為a,∠D=60°,點H為DC邊中點,現(xiàn)以線段AH為折痕將△DAH折起使得點D到達(dá)點P的位置且平面PHA⊥平面ABCH,點E,F分別為AB,AP的中點.
(1)求證:平面PBC∥平面EFH;
(2)若三棱錐P﹣EFH的體積等于,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為2,以橢圓的長軸為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)斜率為的直線交橢圓于,兩點,且,若直線上存在點,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓經(jīng)過點,且和直線相切.
(Ⅰ)求該動圓圓心的軌跡的方程;
(Ⅱ)已知點,若斜率為1的直線與線段相交(不經(jīng)過坐標(biāo)原點和點),且與曲線交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖判斷閏年的流程圖,判斷公元1900年、公元2000年、公元2018年、公元2020年這四年中閏年的個數(shù)為(nMODm為n除以m的余數(shù))( )
A.1個B.2個
C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,,,點在上,且,將沿折起,使得平面平面(如圖2).為中點
(1)求證:;
(2)求四棱錐的體積;
(3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】互聯(lián)網(wǎng)使我們的生活日益便捷,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分,某市一調(diào)查機構(gòu)針對該市市場占有率較高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下外賣甲、外賣乙)的經(jīng)營情況進行了調(diào)查,調(diào)查結(jié)果如下表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單x(百單) | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單y(百單) | 2 | 3 | 10 | 5 | 15 |
(1)試根據(jù)表格中這五天的日接單量情況,從統(tǒng)計的角度說明這兩家外賣企業(yè)的經(jīng)營狀況;
(2)據(jù)統(tǒng)計表明,y與x之間具有線性關(guān)系.
①請用相關(guān)系數(shù)r對y與x之間的相關(guān)性強弱進行判斷;(若,則可認(rèn)為y與x有較強的線性相關(guān)關(guān)系(r值精確到0.001))
②經(jīng)計算求得y與x之間的回歸方程為,假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測當(dāng)外賣乙日接單量不低于25百單時,外賣甲所獲取的日純利潤的大致范圍.(x值精確到0.01)
相關(guān)公式:,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在點處的切線方程;
(2)若在上有解,求的取值范圍;
(3)設(shè)是函數(shù)的導(dǎo)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)的零點為,則點恰好就是該函數(shù)的對稱中心.試求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com