函數(shù)f(x)的定義域是[1,9],則函數(shù)y=f(
x+1
)•
f(x2+2)
x-2
的定義域是______.
因?yàn)楹瘮?shù)y=f(x)的定義域是[1,9],
所以函數(shù)y=f(
x+1
)•
f(x2+2)
x-2
,由
1≤
x+1
≤9
1≤x2+2≤9
x-2≠0

解得
0≤x≤80
-
7
≤x≤
7
x≠2
,即x∈[0,2)∪(2,
7
]
故答案為:[0,2)∪(2,
7
]
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)若p > 1時(shí),解關(guān)于x的不等式;
(2)若對(duì)時(shí)恒成立,求p的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不等式ax>b的解集不可能是( 。
A.(-∞,-
b
a
)
B.RC.(
b
a
,+∞)
D.∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于x的不等式
(x-a)(x-b)
x-c
≥0的解為-1≤x<2或x≥3,則點(diǎn)P(a+b,c)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知集合A={x|x2-x-6>0},B={x|0<x+a<4},若A∩B=∅,求實(shí)數(shù)a的取值范圍;
(2)已知f(x)=-3x2+a(6-a)x+b.當(dāng)不等式f(x)>0的解集為(-1,3)時(shí),求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不等式
x2
x+1
<0的解集為( 。
A.(-1,0)∪(0,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各式中,最小值是2的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某房屋開發(fā)公司用100萬(wàn)元購(gòu)得一塊土地,該地可以建造每層1000m2的樓房,樓房的總建筑面積(即各層面積之和)每平方米平均建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整幢樓房每平方米建筑費(fèi)用提高5%。已知建筑5層樓房時(shí),每平方米建筑費(fèi)用為400元,公司打算造一幢高于5層的樓房,為了使該樓房每平方和的平均綜合費(fèi)用最低(綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),公司應(yīng)把樓層建成幾層?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知lg(3x)+lgy=lg(x+y+1).
(1)求xy的最小值;
(2)求x+y的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案