A. | l∥α | B. | l⊥α | C. | l?α | D. | A、C都有可能 |
分析 直線l的一個方向向量$\overrightarrow a=(2,2,-2)$,平面α的一個法向量為$\overrightarrow b=(1,1,-1)$,可得$\overrightarrow{a}$=2$\overrightarrow$,即可判斷出結(jié)論.
解答 解:∵直線l的一個方向向量$\overrightarrow a=(2,2,-2)$,
平面α的一個法向量為$\overrightarrow b=(1,1,-1)$,
則$\overrightarrow{a}$=2$\overrightarrow$,∴l(xiāng)⊥α.
故選:B.
點評 本題考查了向量共線定理、線面垂直的判定與性質(zhì)定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 212-57 | B. | 211-47 | C. | 210-38 | D. | 29-30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ab>0 | B. | a>0且b>0 | C. | a+b>3 | D. | a≠0或b≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈[0,2π],sinx≥1 | B. | ¬p:?x∈[-2π,0],sinx>1 | ||
C. | ¬p:?x∈[0,2π],sinx>1 | D. | ¬p:?x∈[-2π,0],sinx>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | nxn-1e-x | B. | xne-x | C. | 2xne-x | D. | (n-x)xn-1e-x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com