13.復數(shù)z=$\frac{2i}{i-1}$+i3(i為虛數(shù)單位)的共軛復數(shù)為( 。
A.1-2iB.1+2iC.i-1D.1-i

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.

解答 解:原式=$\frac{2i(1+i)}{-(1-i)(1+i)}$-i=-(i-1)-i=1-2i,
∴復數(shù)z=$\frac{2i}{i-1}$+i3(i為虛數(shù)單位)的共軛復數(shù)為1+2i.
故選:B.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=x2+ax+b(a,b∈R),若存在非零實數(shù)t,使得f(t)+$f(\frac{1}{t})$=-3,則a2+4b2的最小值是37.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.各項都為0的數(shù)列0,0,0,…,0,0(  )
A.既不是等差數(shù)列又不是等比數(shù)列B.是等比數(shù)列但不是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列D.是等差數(shù)列但不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知正項數(shù)列{an}的前n項和為Sn,且$\sqrt{{S}_{n}}$是1與an的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn為數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n項和,證明:$\frac{2}{3}$≤Tn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.給出下列關系:$\sqrt{2}∈Q$,0∉N,2∈{1,2},∅={0};其中結(jié)論正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知f(x)是定義在R上的偶函數(shù),且在(-∞,0]上為減函數(shù),f($\frac{1}{2}$)=0,則不等式f(log4x)>0的解集為(0,$\frac{1}{2}$)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.命題:“若a=0,則ab=0”的逆否命題是若ab≠0,則a≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.雙曲線$\frac{x^2}{4}$-$\frac{y^2}{3}$=1的焦距為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.y=-x2+2ax+3在區(qū)間[2,6]上為減函數(shù).則a的取值范圍為a≤2.

查看答案和解析>>

同步練習冊答案