【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且bsin2C=csinB.
(1)求角C;
(2)若 ,求sinA的值.
【答案】
(1)解:由bsin2C=csinB,根據(jù)正弦定理,得2sinBsinCcosC=sinCsinB,
因?yàn)閟inB>0,sinC>0,
所以 ,
又C∈(0,π),
所以 .
(2)解:因?yàn)? ,
所以 ,
所以 ,
又 ,
所以 .
又 ,即 ,
所以 =sin[ ﹣(B﹣ )]
=
【解析】(1)根據(jù)正弦定理化簡已知等式得2sinBsinCcosC=sinCsinB,結(jié)合sinB>0,sinC>0,可求 ,結(jié)合范圍C∈(0,π),可求C的值.(2)由角的范圍利用同角三角函數(shù)基本關(guān)系式可求cos(B﹣ )的值,由于A= ﹣(B﹣ ),利用兩角差的正弦函數(shù)公式即可計(jì)算求值得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)G(x)=xlnx+(1﹣x)ln(1﹣x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數(shù)f(x)=2aex+1+ ﹣2(a+1)(a>0),若對于任意的x∈(0,+∞),恒有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某市記者招待會上,需要接受本市甲、乙兩家電視臺記者的提問,兩家電視臺均有記者5人,主持人需要從這10名記者中選出4名記者提問,且這4人中,既有甲電臺記者,又有乙電視臺記者,且甲電視臺的記者不可以連續(xù)提問,則不同的提問方式的種數(shù)為( )
A.1200
B.2400
C.3000
D.3600
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個實(shí)數(shù)根,則t的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b∈(0,+∞),且2a4b=2. (Ⅰ)求 的最小值;
(Ⅱ)若存在a,b∈(0,+∞),使得不等式 成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n∈N* , n≥3,k∈N* .
(1)求值: ①kCnk﹣nCn﹣1k﹣1;
② (k≥2);
(2)化簡:12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=sin(x﹣)sin(x+),有下列命題:
①此函數(shù)可以化為f(x)=﹣sin(2x+);
②函數(shù)f(x)的最小正周期是π,其圖象的一個對稱中心是( , 0);
③函數(shù)f(x)的最小值為﹣ , 其圖象的一條對稱軸是x=;
④函數(shù)f(x)的圖象向右平移個單位后得到的函數(shù)是偶函數(shù);
⑤函數(shù)f(x)在區(qū)間(﹣ , 0)上是減函數(shù).
其中所有正確的命題的序號個數(shù)是( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·新課標(biāo)I卷)選修4-5:不等式選講
已知函數(shù)f(x)=|x+1|-2|x-a|, a>0.
(1)當(dāng)a=1時求不等式f(x)>1的解集;
(2)若f(x)圖像與x軸圍成的三角形面積大于6,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com