【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的圖象與y軸的交點為( ),它在y軸右側(cè)的第一個最高點和最低點分別為(x0 , 3),(x0+2π,﹣3).
(1)求函數(shù)y=f(x)的解析式;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(3)求這個函數(shù)的單調(diào)遞增區(qū)間和對稱中心.
【答案】
(1)解:由題意可得A=3,
由在y軸右側(cè)的第一個最大值點和最小值點分別為(x0,3),(x0+2π,﹣3),得: ,
∴T=4π,從而 ,可得:f(x)=3sin( x+φ),
又圖象與y軸交于點 ,
∴ ,
∵由于 ,
∴ ,
∴函數(shù)的解析式為
(2)解:將函數(shù)y=sinx的圖象向左平移 個單位,再將得函數(shù)的圖象縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的兩倍,
最后將所得函數(shù)的圖象橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的3倍得到函數(shù) 的圖象
(3)解:令2kπ﹣ ≤ x+ ≤2kπ﹣ ,k∈Z,解得x∈ ,可得函數(shù)的遞增區(qū)間為: ,
令 x+ =kπ,k∈Z,可得:x=2kπ﹣ ,k∈Z,可得函數(shù)的對稱中心:
【解析】(1)由題意可得A,T,利用周期公式可求ω,又圖象與y軸交于點 ,結(jié)合范圍 ,可求φ,可得函數(shù)的解析式.(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可得解.(3)令2kπ﹣ ≤ x ≤2kπ﹣ ,k∈Z,解得函數(shù)的遞增區(qū)間,令 x+ =kπ,k∈Z,可得函數(shù)的對稱中心:
【考點精析】通過靈活運用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:參數(shù)方程與極坐標(biāo)系
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù), 為傾斜角),以坐標(biāo)原點O為極點, 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為
(1)求曲線的直角坐標(biāo)方程,并 求C的焦點F的直角坐標(biāo);
(2)已知點,若直線與C相交于A,B兩點,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)求橢圓 的長軸和短軸的長、離心率、焦點和頂點的坐標(biāo).
(2)求焦點在y軸上,焦距是4,且經(jīng)過點M(3,2)的橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對此進(jìn)行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(III)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)誤差均不超過2顆,則認(rèn)為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗,(II)中的回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時,任意,存在,使,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內(nèi)的射影在線段上,且, , 為的中點, 在線段上,且.
(Ⅰ)當(dāng)時,證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個多面體的直觀圖和三視圖如圖,M是A1B的中點,N是棱B1C1上的任意一點(含頂點).
①當(dāng)點N是棱B1C1的中點時,MN∥平面ACC1A1;
②MN⊥A1C;
③三棱錐N﹣A1BC的體積為VN﹣A BC= a3;
④點M是該多面體外接球的球心.
其中正確的是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com