如圖,正△ABC的中心位于點(diǎn)G(0,1),A(0,2),動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿△ABC的邊界按逆時(shí)針?lè)较蜻\(yùn)動(dòng),設(shè)旋轉(zhuǎn)的角度∠AGP=x(0≤x≤2π),向量
OP
a
=(1,0)方向的射影為y(O為坐標(biāo)原點(diǎn)),則y關(guān)于x的函數(shù)y=f(x)的圖象是( 。
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專(zhuān)題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,可通過(guò)幾個(gè)特殊點(diǎn)來(lái)確定正確選項(xiàng),可先求出射影長(zhǎng)最小時(shí)的點(diǎn)B時(shí)x的值及y的值,再研究點(diǎn)P從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí)的圖象變化規(guī)律,由此即可得出正確選項(xiàng).
解答:解:設(shè)BC邊與Y軸交點(diǎn)為M,已知可得GM=0.5,故AM=1.5,正三角形的邊長(zhǎng)為
3

連接BG,可得tan∠BGM=
3
2
1
2
=
3
,即∠BGM=
π
3
,所以tan∠BGA=
3
,由圖可得當(dāng)x=
3
時(shí),射影為y取到最小值,其大小為-
3
2
(BC長(zhǎng)為
3
),由此可排除A,B兩個(gè)選項(xiàng);
又當(dāng)點(diǎn)P從點(diǎn)B向點(diǎn)M運(yùn)動(dòng)時(shí),x變化相同的值,此時(shí)射影長(zhǎng)的變化變小,即圖象趨于平緩,由此可以排除D,C是適合的;
故選:C.
點(diǎn)評(píng):由于本題的函數(shù)關(guān)系式不易獲得,可采取特值法,找?guī)讉(gè)特殊點(diǎn)以排除法得出正確選項(xiàng),這是條件不足或正面解答較難時(shí)常見(jiàn)的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)
x=1-2t
y=2+t
(t為參數(shù))與直線(xiàn)6x+ky=1垂直,則常數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為
x=2cosα
y=3sinα
(α為參數(shù)).M是C1上的動(dòng)點(diǎn),N點(diǎn)滿(mǎn)足
ON
=2
OM
,N點(diǎn)的軌跡為曲線(xiàn)C2
(1)求C2的方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程式ρ=2,正三角形ABC的頂點(diǎn)都在C2上,且A,B,C依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
π
6
),設(shè)P是C2上任意一點(diǎn),求|PA|2+|PB|2+|PC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=logax(a>0,且a≠1)的圖象如圖所示,則下列函數(shù)正確的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+sinx的部分圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在同一坐標(biāo)系中畫(huà)出函數(shù)y=logax•y=ax,y=x+a的圖象,可能正確的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直角坐標(biāo)平面內(nèi)A、B兩點(diǎn)滿(mǎn)足條件:
①點(diǎn)A、B都在f(x)的圖象上;
②點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱(chēng),則對(duì)稱(chēng)點(diǎn)對(duì)(A、B)是函數(shù)的一個(gè)“兄弟點(diǎn)對(duì)”(點(diǎn)對(duì)(A、B)與(B、A)可看作一個(gè)“兄弟點(diǎn)對(duì)”).
已知函數(shù)f(x)=
cosx (x≤0)
lgx (x>0)
,則f(x)的“兄弟點(diǎn)對(duì)”的個(gè)數(shù)為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我市在龍湖挖掘過(guò)程中,土石方有以下四種運(yùn)輸方案,據(jù)預(yù)測(cè),這四種方案均能在規(guī)定的時(shí)間T內(nèi)完成預(yù)期運(yùn)輸任務(wù)Q0,各種方案的運(yùn)輸總量Q與時(shí)間t的函數(shù)關(guān)系如圖所示,在這四種方案中,運(yùn)輸效率(單位時(shí)間的運(yùn)輸量)逐步提高的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,向量
OP
=(n,
Sn
n
),
OP1
=(m,
Sm
m
),
OP2
=(k,
Sk
k
)(n,m,k∈N*),且
OP
=λ•
OP1
+μ•
OP2
,則用n、m、k表示μ=( 。
A、
k-m
k-n
B、
k-n
k-m
C、
n-m
k-m
D、
n-m
n-k

查看答案和解析>>

同步練習(xí)冊(cè)答案