【題目】將奇函數(shù)y=f(x)的圖象沿x軸的正方向平移2個單位,所得的圖象為C,又設(shè)圖象C'與C關(guān)于原點對稱,則C'對應(yīng)的函數(shù)為( )
A.y=﹣f(x﹣2)
B.y=f(x﹣2)
C.y=﹣f(x+2)
D.y=f(x+2)
【答案】D
【解析】將函數(shù)y=f(x)的圖象沿x軸正方向平移2個單位所得到的圖象為C,則C對應(yīng)的解析式為y=f(x﹣2),又因為圖象C'與C關(guān)于原點對稱,
所以C'對應(yīng)的解析式為y=﹣f(﹣x﹣2),
因為函數(shù)f(x)是奇函數(shù),
所以y=﹣f(﹣x﹣2)=f(x+2).
故選D
【考點精析】掌握函數(shù)奇偶性的性質(zhì)是解答本題的根本,需要知道在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x6+1,當(dāng)x=x0時,用秦九韶算法求f(x0)的值,需要進行乘方、乘法、加法的次數(shù)分別為( 。
A.21,6,2
B.7,1,2
C.0,1,2
D.0,6,6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下程序運行后的輸出結(jié)果為( 。
i=1 |
A.17
B.19
C.21
D.23
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是(﹣∞,+∞)上的奇函數(shù),f(x+2)=﹣f(x),當(dāng)0≤x≤1時,f(x)=x , 則f(7.5)等于( )
A.0.5
B.﹣0.5
C.1.5
D.﹣1.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=ln(x2+ax﹣a+1),有以下四個結(jié)論:(1)當(dāng)a=0時,f(x)的值域為[0,+∞);(2)f(x)不可能是增函數(shù);(3)f(x)不可能是奇函數(shù);(4)存在a,使得f(x)的圖象是軸對稱的.其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=(m﹣1)x2+mx+3 (x∈R)是偶函數(shù),則f(x)的單調(diào)減區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)滿足f(x)=f(x+2),且當(dāng)x∈[3,5]時,f(x)=1﹣(x﹣4)2則f(x)( )
A.在區(qū)間[﹣2,﹣1]上是增函數(shù),在區(qū)間[5,6]上是增函數(shù)
B.在區(qū)間[﹣2,﹣1]上是增函數(shù),在區(qū)間[5,6]上是減函數(shù)
C.在區(qū)間[﹣2,﹣1]上是減函數(shù),在區(qū)間[5,6]上是增函數(shù)
D.在區(qū)間[﹣2,﹣1]上是減函數(shù),在區(qū)間[5,6]上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正奇數(shù)排成如下三列:
1 3 5
7 9 11
13 15 17
……
則2 007在( )
A. 第334行,第1列 B. 第334行,第2列
C. 第335行,第2列 D. 第335行,第3列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β,γ是三個不同的平面,命題“α∥β,且α⊥γβ⊥γ”是真命題,如果把α,β,γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題有( )
(A)0個 (B)1個 (C)2個 (D)3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com