3.設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2cosAsinB=b2sinAcosB,則△ABC的形狀為( 。
A.等腰直角三角形B.直角三角形
C.等腰三角形或直角三角形D.等邊三角形

分析 利用正弦定理化簡,整理后得到sin2A=sin2B,進而得到2A=2B或2A+2B=π,即可確定出三角形形狀.

解答 解:已知等式利用正弦定理$\frac{a}{sinA}=\frac{sinB}$,化簡得:ba2cosA=ab2cosB,
整理得:acosA=bcosB,即sinAcosA=sinBcosB,
∴2sinAcosA=2sinBcosB,即sin2A=sin2B,
∴2A=2B或2A+2B=π,即A=B或A+B=$\frac{π}{2}$,
則△ABC為等腰三角形或直角三角形.
故選:C.

點評 此題考查了正弦定理,二倍角的正弦函數(shù)公式,熟練掌握正弦定理是解本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知等比數(shù)列{an}中,a1=-16,a4=2,則前4項的和S4等于( 。
A.20B.-20C.10D.-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列四組式子中,f(x)與g(x)表示同一函數(shù)的是( 。
A.f(x)=x-1,x∈R,g(x)=x-1,x∈NB.$f(x)=\frac{{{x^2}-4}}{x+2}$,g(x)=x-2
C.f(x)=x,$g(x)={({\sqrt{x}})^2}$D.f(x)=2x-1,g(t)=2t-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.等比數(shù)列{an}前n項和為Sn,a2=6,6a1+a3=30,則數(shù)列{an}的通項公式是an=3×3n-1或2×2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知f(x)=x2+ax對以任意的a∈[-2,2]都有f(x)≥3-a成立,則x的取值范圍是x$≤-1-\sqrt{2}$或x$≥1+\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(|x|)的圖象( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.遞增數(shù)列{an}滿足2an=an-1+an+1,(n∈N*,n>1),其前n項和為Sn,a2+a8=6,a4a6=8,則S10=35.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(x)=ax2+bx是定義在[a-1,3a]上的偶函數(shù),那么a+b=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=x•ex在極值點處的切線方程為y=-$\frac{1}{e}$.

查看答案和解析>>

同步練習冊答案