3.設(shè)函數(shù)f(x)=(x+1)(2x+3a)為偶函數(shù),則a=-$\frac{2}{3}$.

分析 根據(jù)偶函數(shù)的定義,可得一次項(xiàng)系數(shù)為0,從而可得結(jié)論.

解答 解:函數(shù)f(x)=(x+1)(2x+3a)=2x2+(3a+2)x+3a
∵函數(shù)f(x)=(x+1)(2x+3a)為偶函數(shù),
∴2x2-(3a+2)x+3a=2x2+(3a+2)x+3a
∴3a+2=0
∴a=-$\frac{2}{3}$,
故答案為:$a=-\frac{2}{3}$

點(diǎn)評(píng) 本題考查偶函數(shù)的定義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若雙曲線mx2+2y2=2的虛軸長(zhǎng)為4,則該雙曲線的焦距為( 。
A.$2\sqrt{5}$B.$\sqrt{5}$C.$2\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x-1|,不等式f(x+5)≤3m(m>0)的解集為[-7,-1]
(1)求m的值;
(2)已知a>0,b>0,且2a2+b2=3m,求2a$\sqrt{1+^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)=x+alnx(a>0)對(duì)于區(qū)間[1,3]內(nèi)的任意兩個(gè)相異實(shí)數(shù)x1,x2,恒有$|f({x_1})-f({x_2})|<|\frac{1}{x_1}-\frac{1}{x_2}|$成立,則實(shí)數(shù)a的取值范圍是(0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)全集為R,集合A={x|x2+3x≤0},則∁RA=( 。
A.{x|x<-3或x>0}B.{x|x≤3或x≥0}C.{x|-3<x<0}D.{x|-3≤x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f(9))的值為( 。
A.-$\frac{1}{9}$B.-9C.$\frac{1}{9}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面內(nèi)三個(gè)單位向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=60°,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n的最大值是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{m}$=(a,-1),$\overrightarrow{n}$=(b-1,1),且$\overrightarrow{m}$∥$\overrightarrow{n}$,若b>0,則$\frac{1}{|a|}$+$\frac{4|a|}$的最小值是( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)雙曲線以橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1長(zhǎng)軸的兩個(gè)端點(diǎn)為焦點(diǎn),以橢圓的焦點(diǎn)為頂點(diǎn),則雙曲線的漸近線的斜率為(  )
A.±$\frac{5}{4}$B.±$\frac{4}{3}$C.±$\frac{4}{5}$D.±$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案