某地區(qū)原有森林木材存量為a,且每年增長率為25%,因生產(chǎn)建設(shè)的需要每年底要砍伐的木材量為b,設(shè)an為n年后該地區(qū)森林木材存量.
(1)求an的表達(dá)式;
(2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材量應(yīng)不少于a,如果b=a,那么該地區(qū)今后會發(fā)生水土流失嗎?若會,需要經(jīng)過幾年?(取lg2=0.30).
思路解析:(1)依題意,得a1=a(1+)-b=a-b, a2=a1-b=(a-b)-b=()2a-(+1)b, a3=a2-b=()3a-[()2++1]b, 由此猜測: an=()na-[()n-1+()n-2+…++1]b 。()na-4[()n-1]b(n∈N+). 下面用數(shù)學(xué)歸納法證明: ①當(dāng)n=1時(shí),a1=a-b,猜測成立. ②假設(shè)n=k時(shí),猜測成立. 即ak=()ka-4[()k-1]b成立. 那么當(dāng)n=k+1時(shí), ak+1=ak-b={()ka-4[()k-1]b}-b=()k+1a-4[()k+1-1]b, 即當(dāng)n=k+1時(shí),猜測成立. 由①②知,對任意的自然數(shù)n猜測成立. (2)當(dāng)b=a時(shí),若該地區(qū)今后發(fā)生水土流失時(shí),則森林木材存量必須小于a, ∴()na-4[()n-1]×a<a, 整理,得()n>5, 兩邊取對數(shù)得:nlg>lg5, ∴n>=7. ∴經(jīng)過8年該地區(qū)就開始水土流失. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
7 |
9 |
19 |
72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:專題七 應(yīng)用性問題 題型:044
某地區(qū)原有森林木材存量為a,且每年的增長率為25%,因生產(chǎn)建設(shè)的需要,每年年底要砍伐的木材量為b,設(shè)an為n年后該地區(qū)的森林木材存量,
(1)求an的表達(dá)式;
(2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材存量應(yīng)不少于,如果b=,那么該地區(qū)今后會發(fā)生水土流失嗎?若會,要經(jīng)過幾年?(取lg2=0.30)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求an的表達(dá)式;
(2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材量應(yīng)不少于a,如果b=a,那么該地區(qū)今后會發(fā)生水土流失嗎?若會,需要經(jīng)過幾年?(取lg2=0.30).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求an的表達(dá)式;
(2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材量應(yīng)不少于a,如果b=a,那么該地區(qū)今后會發(fā)生水土流失嗎?若會,需要經(jīng)過幾年(取lg2=0.30)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com