【題目】如圖,四邊形是菱形,四邊形是矩形,平面平面,,的中點,為線段上的中點.

(1)求證:

(2)求二面角的大小.

【答案】(1)證明見解析;(2)

【解析】

1)連接,由題意可得為等邊三角形,根據(jù)“三線合一”可知,由菱形對邊平行,可得;再利用平面平面且四邊形是矩形,可得,即得平面,進而得證;

2)利用(1)結(jié)論得到以為坐標原點,、、所在的直線分別為軸、軸、軸的空間直角坐標系,利用向量法求二面角的余弦值,進而求得該角大小

(1)證明:連接.

在菱形中,,,

為等邊三角形.

又∵的中點,∴.

又∵,∴.

∵四邊形為矩形,∴.

又∵平面平面,平面平面,平面,

平面.

平面,∴.

又∵,,

平面,

平面,

.

(2)由(1)知平面,平面,,

,,兩兩垂直.

為坐標原點,,,所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標系,

,,,,,

,,,

設(shè)平面的法向量為,

,即,

,則.

由圖知,平面的一個法向量為.

.

∵二面角為銳角,∴其余弦值為,大小為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)圖象兩條相鄰的對稱軸間的距離為.

(1)求的值;

(2)將函數(shù)的圖象沿軸向左平移個單位長度后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】張三同學從每年生日時對自己的身高測量后記錄如表:

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,

(1)求身高關(guān)于年齡的線性回歸方程;(可能會用到的數(shù)據(jù):(cm))

(2)利用(1)中的線性回歸方程,分析張三同學歲起到歲身高的變化情況,如 歲之前都符合這一變化,請預測張三同學 歲時的身高。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題.實踐證明, 聲音強度(分貝)由公式 (為非零常數(shù))給出,其中為聲音能量.

(1)當聲音強度滿足時,求對應(yīng)的聲音能量滿足的等量關(guān)系式;

(2)當人們低聲說話,聲音能量為時,聲音強度為30分貝;當人們正常說話,聲音能量為時,聲音強度為40分貝.當聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出三個命題:①直線上有兩點到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點的連線平行于這個平面;③過空間一點必有唯一的平面與兩異面直線平行.正確的是( )

A. ②③B. ①②C. ①②③D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對于曲線f(x)=-exx(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1l2,則實數(shù)a的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù):

(I)時,求的最小值;

(II)對于任意的都存在唯一的使得,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是相似的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點,橢圓的長軸長是4,橢圓長軸長是2,點,分別是橢圓的左焦點與右焦點.

1)求橢圓的方程;

2)過的直線交橢圓于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在極坐標系下,已知圓O和直線

1求圓O和直線l的直角坐標方程;

2時,求直線l與圓O公共點的一個極坐標

查看答案和解析>>

同步練習冊答案