對于任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范圍是(  )
分析:把二次函數(shù)的恒成立問題轉(zhuǎn)化為y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,再利用一次函數(shù)函數(shù)值恒大于0所滿足的條件即可求出x的取值范圍.
解答:解:原問題可轉(zhuǎn)化為關(guān)于a的一次函數(shù)y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,
只需
(-1)•(x-2)+x2-4x+4>0
1×(x-2)+x2-4x+4>0
,
x>3,或x<2
x<1,或x>2

∴x<1或x>3.
故選B.
點評:此題是一道常見的題型,把關(guān)于x的函數(shù)轉(zhuǎn)化為關(guān)于a的函數(shù),構(gòu)造一次函數(shù),因為一次函數(shù)是單調(diào)函數(shù)易于求解,最此類恒成立題要注意.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值總大于0,則x的取值范圍是(  )
A、{x|1<x<3}B、{x|x<1或x>3}C、{x|1<x<2}D、{x|x<1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對于任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,則x的取值范圍是
(-∞?1)∪(3,+∞)
(-∞?1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省巢湖市廬江縣樂橋中學(xué)高三第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

若對于任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,則x的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省南通市數(shù)學(xué)學(xué)科基地高考數(shù)學(xué)回扣課本基礎(chǔ)訓(xùn)練試卷(解析版) 題型:解答題

若對于任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,則x的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案