【題目】已知是不重合直線,是不重合平面,則下列命題

①若,則

②若,則

③若、,則

④若,則

⑤若,則

為假命題的是

A. ①②③ B. ①②⑤ C. ③④⑤ D. ①②④

【答案】D

【解析】

由垂直于同一平面的兩平面平行或相交,可判斷;由面面平行的判定定理可判斷;由平行平面的傳遞性可判斷;由線面垂直和面面垂直的性質(zhì)可判斷;由垂直于同一平面的兩直線平行可判斷

m、n是不重合直線,α、β、γ是不重合平面,

對(duì)于,若αγ、βγ,則αβα,β相交,故錯(cuò)誤;

對(duì)于,若mαnα、mβ、nβ,且m,n相交,則αβ,故錯(cuò)誤;

對(duì)于,若αβ、γβ,則γα,故正確;

對(duì)于,若αβ、mβ,則mαmα,故錯(cuò)誤;

對(duì)于,若mα、nα,則mn,故正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆河南省南陽市第一中學(xué)高三上學(xué)期第八次考試】2017514日至15日,一帶一路國際合作高峰論壇在中國首都北京舉行,會(huì)議期間,達(dá)成了多項(xiàng)國際合作協(xié)議.假設(shè)甲、乙兩種品牌的同類產(chǎn)品出口某國家的市場(chǎng)銷售量相等,該國質(zhì)量檢驗(yàn)部門為了解他們的使用壽命,現(xiàn)從這兩種品牌的產(chǎn)品中分別隨機(jī)抽取300個(gè)進(jìn)行測(cè)試,結(jié)果統(tǒng)計(jì)如下圖所示.

1)估計(jì)甲品牌產(chǎn)品壽命小于200小時(shí)的概率;

2)在抽取的這兩種品牌產(chǎn)品中,抽取壽命超過300小時(shí)的產(chǎn)品3個(gè),設(shè)隨機(jī)變量表示抽取的產(chǎn)品是甲品牌的產(chǎn)品個(gè)數(shù),求的分布列和數(shù)學(xué)期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,定長為3的線段兩端點(diǎn)、分別在軸,軸上滑動(dòng),在線段上,且.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)是軌跡上一點(diǎn),從原點(diǎn)向圓作兩條切線分別與軌跡交于點(diǎn),,直線,的斜率分別記為,.

①求證:;

②求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組共有五位同學(xué),他們的身高(單位:米)以及體重指標(biāo)(單位:千克/2

如下表所示:


A

B

C

D

E

身高

1.69

1.73

1.75

1.79

1.82

體重指標(biāo)

19.2

25.1

18.5

23.3

20.9

(Ⅰ)從該小組身高低于的同學(xué)中任選人,求選到的人身高都在以下的概率

(Ⅱ)從該小組同學(xué)中任選人,求選到的人的身高都在以上且體重指標(biāo)都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)P是函數(shù)圖象上任意一點(diǎn),點(diǎn)Q坐標(biāo)為,當(dāng)取得最小值時(shí)圓上至多有2個(gè)點(diǎn)到直線的距離為1,則實(shí)數(shù)的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點(diǎn)E是棱AD的中點(diǎn),點(diǎn)F在棱SC上,且λ,SA//平面BEF

1)求實(shí)數(shù)λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)于曲線上任意點(diǎn)處的切線,總存在上處的切線,使得,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),試求的單調(diào)區(qū)間;

(2)若內(nèi)有極值,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案