已知三次函數(shù)為奇函數(shù),且在點(diǎn)的切線方程為
(1)求函數(shù)的表達(dá)式;
(2)已知數(shù)列的各項都是正數(shù),且對于,都有,求數(shù)列的首項和通項公式;
(3)在(2)的條件下,若數(shù)列滿足,求數(shù)列的最小值.
(1)(2)
(3)①若時, 數(shù)列的最小值為當(dāng)時,
②若時, 數(shù)列的最小值為, 當(dāng)時或
③若時, 數(shù)列的最小值為,當(dāng)時,
④若時,數(shù)列的最小值為,當(dāng)時
【解析】
試題分析:解:(1) ∵ 為奇函數(shù), ,
即
3分
,又因為在點(diǎn)的切線方程為
, 4分
(2)由題意可知:....
+
所以 ①
由①式可得 5分
當(dāng), ②
由①-②可得:
∵為正數(shù)數(shù)列 ..③ 6分
④
由③-④可得:
∵>0,,
是以首項為1,公差為1的等差數(shù)列, 8分
9分
(注意:學(xué)生可能通過列舉然后猜測出,扣2分,即得7分)
(3) ∵,
令, 10分
(1)當(dāng)時,數(shù)列的最小值為當(dāng)時, 11分
(2)當(dāng)時
①若時, 數(shù)列的最小值為當(dāng)時,
②若時, 數(shù)列的最小值為, 當(dāng)時或
③若時, 數(shù)列的最小值為,當(dāng)時,
④若時,數(shù)列的最小值為,當(dāng)時
14分
考點(diǎn):數(shù)列的性質(zhì)和數(shù)列的通項公式
點(diǎn)評:解決的關(guān)鍵是根據(jù)數(shù)列的性質(zhì)以及數(shù)列的前n想項和與通項公式的關(guān)系來求解,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
n |
i=1 |
n |
i=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省執(zhí)信中學(xué)高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省珠海一中等六校高三(上)第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com