如圖,圓O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F,且AB=2BP=4。
(1)求線段PF的長(zhǎng)度;
(2)若圓F與圓O內(nèi)切,直線PT與圓F切于點(diǎn)T,求線段PT的長(zhǎng)度。
解:(1)連接OC,OD,OE,由同弧對(duì)應(yīng)的圓周角與圓心角之間的關(guān)系結(jié)合題中條件弧長(zhǎng)AE等于弧長(zhǎng)AC可得∠CDE=∠AOC
又∠CDE=∠P+∠PFD,∠AOC=∠P+∠OCP,
從而∠PFD=∠OCP,
故△PFD∽△PCO,
由割線定理知PC·PD=PA·PB=12,
(2)若圓F與圓O內(nèi)切,設(shè)圓F的半徑為r,
因?yàn)镺F=2-r=1,即r=1,
所以O(shè)B是圓F的直徑,且過(guò)P點(diǎn)圓F的切線為PT
則PT2=PB·PO=2×4=8,即。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,過(guò)C作圓的切線l,過(guò)A作l的垂線AD,垂足為D,則線段CD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)C作圓的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,則線段AE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•天門模擬)(1)如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)點(diǎn)C作圓的切線l,過(guò)點(diǎn)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,則線段AE的長(zhǎng)為
4
4

(2)在平面直角坐標(biāo)系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2sinθ
y=1+2cosθ
(θ為參數(shù)),若曲線C1、C2有公共點(diǎn),則實(shí)數(shù)a的取值范圍為
[1-
5
1+
5
]
[1-
5
,1+
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鹽城一模)[A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)C作圓的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.則DE=
8
8

B.(坐標(biāo)系與參數(shù)方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)),當(dāng)α=
π
3
時(shí),C1與C2的交點(diǎn)坐標(biāo)為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對(duì)一切非零實(shí)數(shù)a恒成立,則實(shí)數(shù)a的取值范圍
[-
1
2
,
3
2
]
[-
1
2
3
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案