【題目】下列命題中是真命題的個(gè)數(shù)是( )

(1)垂直于同一條直線的兩條直線互相平行

(2)與同一個(gè)平面夾角相等的兩條直線互相平行

(3)平行于同一個(gè)平面的兩條直線互相平行

(4)兩條直線能確定一個(gè)平面

(5)垂直于同一個(gè)平面的兩個(gè)平面平行

A. B. C. D.

【答案】A

【解析】分析:逐一分析判斷每一個(gè)命題的真假.

詳解:對(duì)于(1),垂直于同一條直線的兩條直線可能平行,也可能異面或相交.所以是錯(cuò)誤的.對(duì)于(2),與同一個(gè)平面夾角相等的兩條直線可能互相平行,也可能相交或異面,所以是錯(cuò)誤的.對(duì)于(3),平行于同一個(gè)平面的兩條直線可能互相平行,也可能異面或相交,所以是錯(cuò)誤的.對(duì)于(4)兩條直線能不一定確定一個(gè)平面,還有可能不能確定一個(gè)平面,所以是錯(cuò)誤的.對(duì)于(5),垂直于同一個(gè)平面的兩個(gè)平面不一定平行,還有可能相交,所以是錯(cuò)誤的.故答案為:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲乙兩地某月12時(shí)的氣溫狀況,選取該月5天中12時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖,考慮以下結(jié)論:

①甲地該月12時(shí)的平均氣溫低于乙地該月12時(shí)的平均氣溫;

②甲地該月12時(shí)的平均氣溫高于乙地該月12時(shí)的平均氣溫;

③甲地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差;

④甲地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月12時(shí)的氣溫的標(biāo)準(zhǔn)差.

其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為(

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(I)討論的單調(diào)性;

II)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為降低汽車尾氣的排放量,某廠生產(chǎn)甲乙兩種不同型號(hào)的節(jié)排器,分別從甲乙兩種節(jié)排器中各自抽取100件進(jìn)行性能質(zhì)量評(píng)估檢測(cè),綜合得分情況的頻率分布直方圖如圖所示.

節(jié)排器等級(jí)及利潤如表格表示,其中

綜合得分的范圍

節(jié)排器等級(jí)

節(jié)排器利潤率

一級(jí)品

二級(jí)品

三級(jí)品

1)若從這100件甲型號(hào)節(jié)排器按節(jié)排器等級(jí)分層抽樣的方法抽取10件,再從這10件節(jié)排器中隨機(jī)抽取3件,求至少有2件一級(jí)品的概率;

2)視頻率分布直方圖中的頻率為概率,用樣本估計(jì)總體,則

①若從乙型號(hào)節(jié)排器中隨機(jī)抽取3件,求二級(jí)品數(shù)的分布列及數(shù)學(xué)期望

②從長期來看,骰子哪種型號(hào)的節(jié)排器平均利潤較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a11,且4an+1anan+1+2an9nN*).

1)求a2,a3,a4;

2)由(1)猜想{an}的通項(xiàng)公式an ;

3)用數(shù)學(xué)歸納法證明(2)的結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列是單調(diào)遞增數(shù)列,且的等差中項(xiàng)為,的等比中項(xiàng)為16,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)令,,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中a為常數(shù).

當(dāng)時(shí),設(shè)函數(shù),判斷函數(shù)上是增函數(shù)還是減函數(shù),并說明理由;

設(shè)函數(shù),若函數(shù)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案