已知數(shù)列前n項(xiàng)和為成等差數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)數(shù)列滿足,求證:.

(I);(II)詳見(jiàn)解析.

解析試題分析:(I)由成等差數(shù)列得到的關(guān)系,令可求出.利用可得的遞推公式,在本題中由此即可得出是等比數(shù)列,從而可得其通項(xiàng)公式;(II)由第一問(wèn)并通過(guò)對(duì)數(shù)的運(yùn)算性質(zhì)將化簡(jiǎn).得到,通過(guò)裂項(xiàng),由裂項(xiàng)相消法即可得到.
試題解析:(I)成等差數(shù)列,     1分
當(dāng)時(shí),    2分
當(dāng)時(shí),,
兩式相減得:,    5分
所以數(shù)列是首項(xiàng)為,公比為2的等比數(shù)列,    7分
(II)    9分
    11分

    14分
考點(diǎn):1.等差數(shù)列的性質(zhì);2.對(duì)比數(shù)列通項(xiàng)公式;3.裂項(xiàng)相消法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足的等差中項(xiàng);數(shù)列滿足).
(1)求數(shù)列的通項(xiàng)公式;
(2)試確定的值,使得數(shù)列為等差數(shù)列;
(3)當(dāng)為等差數(shù)列時(shí),對(duì)每個(gè)正整數(shù),在之間插入個(gè)2,得到一個(gè)新數(shù)列. 設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)的和為,點(diǎn)在函數(shù)的圖象上.
(1)求數(shù)列的通項(xiàng)公式及的最大值;
(2)令,求數(shù)列的前項(xiàng)的和;
(3)設(shè),數(shù)列的前項(xiàng)的和為,求使不等式對(duì)一切都成立的最大正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)為正數(shù)的等差數(shù)列滿足,,且).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在等差數(shù)列{}中,=3,前7項(xiàng)和=28。
(I)求數(shù)列{}的公差d;
(II)若數(shù)列{}為等比數(shù)列,且,求數(shù)列}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列中,且滿足 (  )
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn滿足
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式:
(Ⅱ)設(shè)Tn為數(shù)列{Sn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)公差為)的等差數(shù)列與公比為)的等比數(shù)列有如下關(guān)系:,,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記,,,求集合中的各元素之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的第二項(xiàng)為8,前10項(xiàng)和為185。
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……按原來(lái)順序組成一個(gè)新數(shù)列,試求數(shù)列的通項(xiàng)公式和前n項(xiàng)的和

查看答案和解析>>

同步練習(xí)冊(cè)答案