14.集合A={y|y=2x-1},B={x||2x-3|≤3},則A∩B=( 。
A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤3}D.{x|1<x≤3}

分析 求出集合A,B,然后求解交集即可.

解答 解:集合A={y|y=2x-1}={y|y>0},B={x||2x-3|≤3}={x|0≤x≤3},
則A∩B={x|0<x≤3}.
故選:A.

點(diǎn)評 本題考查集合的基本運(yùn)算,交集的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在[-2,2]上隨機(jī)地取兩個(gè)實(shí)數(shù)a,b,則事件“直線x+y=1與圓(x-a)2+(y-b)2=2相交”發(fā)生的概率為(  )
A.$\frac{1}{4}$B.$\frac{9}{16}$C.$\frac{3}{4}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知變量x、y滿足的約束條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=3x+2y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=|x+2|-|2x-1|,M為不等式f(x)>0的解集.
(1)求M;
(2)求證:當(dāng)x,y∈M時(shí),|x+y+xy|<15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在某個(gè)位置測得某山峰仰角為θ,對著山峰在地面上前進(jìn)600m后測得仰角為2θ,繼續(xù)在地面上前進(jìn)200$\sqrt{3}$m以后測得山峰的仰角為4θ,求該山峰的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列四個(gè)命題中,正確的個(gè)數(shù)是( 。
①命題“存在x∈R,x2-x>0”的否定是“對于任意的x∈R,x2-x<0”;
②若函數(shù)f(x)在(2016,2017)上有零點(diǎn),則f(2016)•f(2017)<0;
③在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為-$\frac{1}{2}$;
④函數(shù)y=sin2x+cos2x在[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間為[0,$\frac{π}{8}$].
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在(0,$\frac{π}{2}}$)上的函數(shù)f(x),f'(x)為其導(dǎo)數(shù),且$\frac{f(x)}{{{sin}x}}$<$\frac{f'(x)}{cosx}$恒成立,則( 。
A.$\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$)C.f(1)<2f($\frac{π}{6}$)sin1D.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a=$\root{3}{{{{(3-π)}^3}}}$,b=$\root{4}{{{{(2-π)}^4}}}$,則a+b的值為( 。
A.1B.5C.-1D.2π-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若a>0,b>0,2a+b=1,則ab的最大值為$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊答案