【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.()若的面積等于,求;)若,求的面積.

【答案】,.(的面積

【解析】

試題分析:(1)由余弦定理及已知條件得,a2b2ab4,…………2

又因?yàn)?/span>△ABC的面積等于,所以absinC,得ab4.…………4

聯(lián)立方程組解得a2,b2.…………5

2)由題意得sin(BA)sin(BA)4sinAcosA,即sinBcosA2sinAcosA,…………7

當(dāng)cosA0時(shí),AB,a,b,…………8

當(dāng)cosA≠0時(shí),得sinB2sinA,由正弦定理得b2a,聯(lián)立方程組

解得a,b.…………10

所以△ABC的面積SabsinC.…………11

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=3的距離是它到點(diǎn)D(1,0)的距離的 倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)軌跡C上一動(dòng)點(diǎn)T滿足: =2λ +3μ ,其中P、Q是軌跡C上的點(diǎn),且直線OP與OQ的斜率之積為﹣ .若N(λ,μ)為一動(dòng)點(diǎn),F(xiàn)1(﹣ ,0)、F2 ,0)為兩定點(diǎn),求|NF1|+|NF2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告,廣告費(fèi)用不超過(guò)9萬(wàn)元,甲、乙電視臺(tái)的廣告費(fèi)標(biāo)準(zhǔn)分別是500/分鐘和200元分鐘,假設(shè)甲、乙兩個(gè)電視臺(tái)為該公司做的廣告能給公司帶來(lái)的收益分別為0.4萬(wàn)元/分鐘和0.2萬(wàn)元分鐘,那么該公司合理分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,能使公司獲得最大的收益是()萬(wàn)元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為了測(cè)量A,B處島嶼的距離,小明在D處觀測(cè),A,B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛40海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西60°方向,則A,B兩處島嶼間的距離為(
A. 海里
B. 海里
C. 海里
D.40海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),在數(shù)列中,首項(xiàng),是其前項(xiàng)和,且,.

1)設(shè),證明數(shù)列是等比數(shù)列,并求出的通項(xiàng)公式;

2)設(shè),,證明數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

3)若當(dāng)且僅當(dāng)時(shí),數(shù)列取到最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.()若的面積等于,求;)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB為真命題,而BC的逆否命題為真命題,且ABCD的充分條件,而DEBC的充要條件,則¬B是¬E____條件;AE____條件.(填充分”“必要、充要既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 .

討論的單調(diào)性;

,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案