【題目】已知橢圓:.
(1)若拋物線的焦點與的焦點重合,求的標準方程;
(2)若的上頂點、右焦點及軸上一點構成直角三角形,求點的坐標;
(3)若為的中心,為上一點(非的頂點),過的左頂點,作,交軸于點,交于點,求證:.
【答案】(1)拋物線的標準方程為和.
(2)或.
(3)見解析
【解析】
(1)根據(jù)橢圓的方程和拋物線的性質即可求出;
(2)按哪個角為直角進行分類,結合數(shù)量積為0,計算得到M的坐標.
(3)由B(﹣3,0),BQ∥OP,設直線BQ的方程為x=my﹣3,直線OP的方程為x=my,分別于橢圓的方程聯(lián)立,求出點Q,N,P的坐標,再根據(jù)向量的運算即可證明.
(1) 橢圓的焦點坐標為和,拋物線的標準方程為和.
(2)設點的坐標為,的上頂點的坐標為,右焦點的坐標為.
當為直角頂點時,點的坐標為;
當為直角頂點時,,,由,解得,點的坐標為.
因此,點的坐標為或.
(3)設直線的方程為(),直線的方程為.
于是點,的坐標,為方程組的實數(shù)解,
解得點的坐標為.
點,的坐標,為方程組的實數(shù)解,解得點的坐標為.
又點的坐標為.
于是,,,
,
,
即,得證.
科目:高中數(shù)學 來源: 題型:
【題目】對n個互不相等的正整數(shù),其中任意六個數(shù)中都至少存在兩個數(shù),使得其中一個能整除另一個.求n的最小值,使得在這n個數(shù)中一定存在六個數(shù),其中一個能被另外五個整除.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:平面AEC;
(2)設AP=1,AD=,三棱錐P-ABD的體積V=,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求曲線在點處切線的方程;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)當時,恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中有四個小球,分別寫有“海”“中”“加”“油”四個字,有放回地從中任取一個小球,取到“加”就停止,用隨機模擬的方法估計直到第二次停止的概率:先由計算器產生1到4之間取整數(shù)值的隨機數(shù),且用1、2、3、4表示取出小球上分別寫有“海”“中”“加”“油”四個字,以每兩個隨機數(shù)為一組,代表兩次的結果.經(jīng)隨機模擬產生了20組隨機數(shù):
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
據(jù)此估計,直到第二次就停止概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將編號為1,2,…,18的18名乒乓球運動員分配在9張球臺上進行單打比賽,規(guī)定每一張球臺上兩選手編號之和均為大于4的平方數(shù).記{7號與18號比賽}為事件p.則p為( 。
A. 不可能事件 B. 概率為的隨機事件
C. 概率為的隨機事件 D. 必然事件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學、外語3門必選科目外,考生再從物理、歷史中選1門,從化學、生物、地理、政治中選2門作為選考科目.為了幫助學生合理選科,某中學將高一每個學生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達圖.甲同學的成績雷達圖如圖所示,下面敘述一定不正確的是( 。
A.甲的物理成績領先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學、歷史
D.對甲而言,物理、化學、地理是比較理想的一種選科結果
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com