【題目】設(shè) ,若0≤a≤1,n∈N+且n≥2,求證:f(2x)≥2f(x).
【答案】證明:∵ ,
∴要證f(2x)≥2f(x),
只要證 ,
即證 (*)
也即證n[12x+22x+…+(n-1)2x+a·n2x]
≥[1x+2x+…+(n-1)x+a·nx]2 ,
∵0≤a≤1,∴a>a2 , 根據(jù)柯西不等式得
n[12x+22x+…+(n-1)2x+a·n2x]
,
≥[1x+2x+…+(n-1)x+a·nx]2 ,
即(*)式顯然成立,故原不等式成立.
【解析】本題主要考查了一般形式的柯西不等式,解決問題的關(guān)鍵是將f(2x)>2f(x)具體化,然后再根據(jù)式子的結(jié)構(gòu)特點(diǎn)選擇合適的證明方法.
【考點(diǎn)精析】本題主要考查了一般形式的柯西不等式的相關(guān)知識點(diǎn),需要掌握一般形式的柯西不等式:才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD= ,AA1=3,E為CD上一點(diǎn),DE=1,EC=3
(1)證明:BE⊥平面BB1C1C;
(2)求三棱錐B1﹣EA1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對100名六年級學(xué)生進(jìn)行了問卷調(diào)查得到如圖聯(lián)表.且平均每天喝500ml以上為常喝,體重超過50kg為肥胖.已知在全部100人中隨機(jī)抽取1人,抽到肥胖的學(xué)生的概率為0.8.
常喝 | 不常喝 | 合計 | |
肥胖 | 60 | ||
不肥胖 | 10 | ||
合計 | 100 |
(1)求肥胖學(xué)生的人數(shù)并將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有95%的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?說明你的理由. 附:參考公式:x2=
P(x2≥x0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+ )圖象上的每個點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,再將所得圖象向左平移 個單位得到函數(shù)g(x)的圖象.在g(x)圖象的所有對稱中心中,離原點(diǎn)最近的對稱中心為( )
A.(﹣ ,0)
B.( ,0)
C.(﹣ ,0)
D.( ,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 a,b 為實(shí)數(shù),且 a>0,b>0 ,
(1)求證: ;
(2)求(5-2a)2+4b2+(a-b)2 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路段的一個檢測點(diǎn)對200輛汽車的車速進(jìn)行檢測所得結(jié)果的頻率分布直方圖,則下列說法正確的是( )
A.平均數(shù)為62.5
B.中位數(shù)為62.5
C.眾數(shù)為60和70
D.以上都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 的三個內(nèi)角 A,B,C 成等差數(shù)列,且 a,b,c 分別為角 A,B,C 的對邊,求證:(a+b)-1+(b+c)-1=3(a+b+c)-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E為正方形ABCD邊CD上異于點(diǎn)C,D的動點(diǎn),將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個說法中正確的個數(shù)是( )
①存在點(diǎn)E使得直線SA⊥平面SBC
②平面SBC內(nèi)存在直線與SA平行
③平面ABCE內(nèi)存在直線與平面SAE平行.
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com