(本題滿(mǎn)分12分)
已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,,是它的左,右焦點(diǎn).
(1)若,且,,求的坐標(biāo);
(2)在(1)的條件下,過(guò)動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線(xiàn)是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.


(1)
(2)
解:(1)依題意知-------①-----------------1分

  ∴, ∴-2分
,由橢圓定義可知------②---4分
由①②得. ∴、-----------------6分
(2)由已知,即
的切線(xiàn) ∴-------8分
------------------------9分
設(shè),則

---------11分
綜上所述,所求動(dòng)點(diǎn)的軌跡方程為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,P為該橢圓上一點(diǎn).
(1)若P到左焦點(diǎn)的距離為3,求到右準(zhǔn)線(xiàn)的距離;
(2)如果F1為左焦點(diǎn),F2為右焦點(diǎn),并且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓的兩焦點(diǎn)為(-2,0)和(2,0),且橢圓過(guò)點(diǎn),則橢圓方程是         (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知橢圓)的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓相交于,兩點(diǎn),分別為線(xiàn)段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)
已知橢圓,直線(xiàn),F(xiàn)為橢圓的右焦點(diǎn),M為橢圓上任意一點(diǎn),記M到直線(xiàn)L的距離為d.

(Ⅰ) 求證:為定值;
(Ⅱ) 設(shè)過(guò)右焦點(diǎn)F的直線(xiàn)m的傾斜角為,m交橢圓于A、B兩點(diǎn),且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)O和點(diǎn)F分別為橢圓的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則的最小值為_(kāi)________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左焦點(diǎn)坐標(biāo)是__________,右準(zhǔn)線(xiàn)方程是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的焦點(diǎn)分別為,如果橢圓上存在點(diǎn),使得·,則橢圓離心率的取值范圍是( )
A.(]B. [)C. (]D.[)

查看答案和解析>>

同步練習(xí)冊(cè)答案