(本小題滿分13分)設(shè)橢圓的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸上有一點(diǎn)B,滿足且F1為BF2的中點(diǎn).
(Ⅰ)求橢圓 C的離心率;
(Ⅱ)若過A、B、F2三點(diǎn)的圓恰好與直線相切,判斷橢圓C和直線的位置關(guān)系.
(Ⅰ)橢圓的離心率. (Ⅱ)直線和橢圓相交.
【解析】(I)求出左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A的坐標(biāo),通過,且AB⊥AF2,推出a,b,c的關(guān)系,結(jié)合a2=b2+c2,即可求橢圓C的離心率;
(II)利用(I)求出過A、B、F2三點(diǎn)的圓的圓心與半徑,利用圓與直線相切圓心到直線的距離等于半徑,求出a,b,即可求橢圓C的方程.
(Ⅰ)由題意知,,.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111916403012884105/SYS201211191641364726604085_DA.files/image007.png">,所以在中,. ……2分
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111916403012884105/SYS201211191641364726604085_DA.files/image010.png">為的中點(diǎn),所以, ……4分
又,所以.故橢圓的離心率. ……6分
(Ⅱ)由(Ⅰ)知,于是,,
的外接圓圓心為,半徑. ……8分
所以,解得,所以,.
所以橢圓的標(biāo)準(zhǔn)方程為:. ……11分
由得:,可得,所以直線和橢圓相交. ……13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com