已知O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,||=4,∠x(chóng)OA=60°,求向量的坐標(biāo).

答案:
解析:

  解:設(shè)點(diǎn)A(x,y),則x=||cos60°=4cos60°=2,

  y=||sin60°=4sin60°=6,即A(2,6),所以=(2,6).


提示:

要求向量的坐標(biāo),就是要求出向量在x、y軸上的坐標(biāo),為此可通過(guò)三角函數(shù)求解.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-1,1),若點(diǎn)M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
,上的一個(gè)動(dòng)點(diǎn),則
OA
OM
的取值范圍是( 。
A、[-1,0]
B、[0,1]
C、[0,2]
D、[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(1,2),若點(diǎn)M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個(gè)動(dòng)點(diǎn),則
OA
OM
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江一模)已知O是坐標(biāo)原點(diǎn),點(diǎn)A(1,2),若點(diǎn)M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個(gè)動(dòng)點(diǎn),則
OA
OM
的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-l,1),若點(diǎn)M(x,y)
x+y≥2
x≤1
y≤2
內(nèi)的一個(gè)動(dòng)點(diǎn),則
OA
OM
的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•順義區(qū)一模)已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-2,1),若點(diǎn)M(x,y)為平面區(qū)域
x-y+1≥0
y+1≥0
x+y+1≤0
,上的一個(gè)動(dòng)點(diǎn),則
OA
OM
的最大值為
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案