8.如圖,已知正方體ABCD-A1B1C1D1,M,N分別為A1D1和AA1的中點(diǎn),則下列四種說法中正確的個(gè)數(shù)為( 。
①C1M∥AC;
②BD1⊥AC;
③BC1與AC的所成角為60°;
④CD與BN為異面直線.
A.1B.2C.3D.4

分析 在①中,C1M與AC是異面直線;在②中,由AC⊥平面BDD1,知BD1⊥AC;在③中,由AC∥A1C1,BC=A1C1=BA1,知BC1與AC的所成角為60°;在④中,由CD∥AB,AB∩BN=B,知CD與BN既為異面直線.

解答 解:由正方體ABCD-A1B1C1D1,M,N分別為A1D1和AA1的中點(diǎn),知:
在①中,AC∥A1C1,A1C1∩C1M=C1,∴C1M與AC是異面直線,故①錯(cuò)誤;
在②中,∵AC⊥DD1,AC⊥BD,BD∩DD1=D,
∴AC⊥平面BDD1,又BD?平面BDD1,故BD1⊥AC,故②正確;
在③中,AC∥A1C1,BC=A1C1=BA1,∴BC1與AC的所成角為60°,故③正確;
在④中,CD∥AB,AB∩BN=B,故CD與BN既為異面直線,故④正確.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置的關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“$cosα=\frac{1}{2}$”是“$α=\frac{π}{3}$”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某公司經(jīng)營一批進(jìn)價(jià)為每件4百元的商品,在市場(chǎng)調(diào)查時(shí)發(fā)現(xiàn),此商品的銷售單價(jià)x(百元)與日銷售量y(件)之間有如下關(guān)系:
x(百元)56789
y(件)108961
(1)求y關(guān)于x的回歸直線方程;
(2)借助回歸直線方程請(qǐng)你預(yù)測(cè),銷售單價(jià)為多少百元(精確到個(gè)位數(shù))時(shí),日利潤最大?
相關(guān)公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.以下四個(gè)命題中,錯(cuò)誤命題的序號(hào)是( 。
A.△ABC中,若a>b,則sinA>sinB
B.函數(shù)y=f(x)在x=x0處取得極值的充要條件是f'(x0)=0
C.等差數(shù)列{an}中,a4=4,a5+a11=16則a12=12
D.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的焦點(diǎn)到漸近線的距離3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線經(jīng)過兩點(diǎn)A(m,2),B(-m,2m-1)且傾斜角為45°,則m的值為( 。
A.$\frac{3}{4}$B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.春節(jié)是旅游消費(fèi)旺季,某大型商場(chǎng)通過對(duì)春節(jié)前后20天的調(diào)查,得到部分日經(jīng)濟(jì)收入Q與這20天中的第x天(x∈N+)的部分?jǐn)?shù)據(jù)如表:
 天數(shù)x(天) 35 79 1113 15
 日經(jīng)濟(jì)收入Q(萬元)154180198 208210 204190
(1)根據(jù)表中數(shù)據(jù),結(jié)合函數(shù)圖象的性質(zhì),從下列函數(shù)模型中選取一個(gè)最恰當(dāng)?shù)暮瘮?shù)模型描述Q與x的變化關(guān)系,只需說明理由,不用證明.
①Q(mào)=ax+b,②Q=-x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)結(jié)合表中的數(shù)據(jù),根據(jù)你選擇的函數(shù)模型,求出該函數(shù)的解析式,并確定日經(jīng)濟(jì)收入最高的是第幾天;并求出這個(gè)最高值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知P是橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$上一點(diǎn),F(xiàn)1和F2是焦點(diǎn),若$∠{F_1}P{F_2}={60^0}$,則△PF1F2的面積為( 。
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合M={-1,0,1},N={x∈Z|-1<x<1},則M∩N等于( 。
A.{-1,0,1}B.{-1}C.{1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖1,在等邊△ABC中,D,E,F(xiàn)分別為AB,AC,BC的中點(diǎn).將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF.

(Ⅰ)證明:AF⊥BC;
(Ⅱ)當(dāng)∠BFC=120°時(shí),求二面角A-DE-F的余弦值;
(Ⅲ)在(Ⅱ)的條件下,在線段BC上是否存在一點(diǎn)N,使得平面ABF⊥平面FDN?若存在,求出$\frac{{|{BN}|}}{{|{BC}|}}$的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案