一個(gè)三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,且長(zhǎng)度分別為 2、2、4,則S點(diǎn)到平面ABC的距離為(  )
分析:先求出△ABC的面積,再利用等體積,即可求得S點(diǎn)到平面ABC的距離.
解答:解:∵三棱錐S-ABC中,共頂點(diǎn)S的三條棱兩兩互相垂直,且SA=SB=2,SC=4,
∴AB=2
2
,AC=BC=2
5

∴AB邊上的高為
20-2
=3
2

S△ABC=
1
2
×2
2
×3
2
=6
設(shè)S點(diǎn)到平面ABC的距離為h,則由等體積可得
1
3
×
1
2
×2×2×4
=
1
3
×6×h

∴h=
4
3

即S點(diǎn)到平面ABC的距離為
4
3

故選A.
點(diǎn)評(píng):本題考查點(diǎn)到面距離的計(jì)算,考查三棱錐體積的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將一個(gè)長(zhǎng)方體沿相鄰三個(gè)面的對(duì)角線截出一個(gè)三棱錐S-ABC,求三棱錐S-ABC的體積與剩下的幾何體體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,且長(zhǎng)度分別為1、
6
、3.已知該三棱錐的四個(gè)頂點(diǎn)都在一個(gè)球面上,則這個(gè)球的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,且長(zhǎng)度分別為1,
6
,3,已知該三棱錐的四個(gè)頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的表面積為
16π
16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)一個(gè)三棱錐S-ABC的三視圖、直觀圖如圖.
(1)求三棱錐S-ABC的體積;
(2)求點(diǎn)C到平面SAB的距離;
(3)求二面角S-AB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案