已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,其左、右焦點分別為F1、F2,點P是坐標(biāo)平面內(nèi)一點,且|OP|=
7
2
,
PF1
PF2
=
3
4
(O為坐標(biāo)原點).
(1)求橢圓C的方程;
(2)過點S(0,-
1
3
)
且斜率為k的動直線l交橢圓于A、B兩點,在y軸上是否存在定點M,使以AB為直徑的圓恒過這個點?若存在,求出M的坐標(biāo)和△MAB面積的最大值;若不存在,說明理由.
(1)設(shè)P(x0,y0),F(xiàn)1(-c,0),F(xiàn)2(c,0),
則由|OP|=
7
2
x20
+
y20
=
7
4
;
PF1
PF2
=
3
4
(-c-x0,-y0)•(c-x0,-y0)=
3
4
,
x20
+
y20
-c2=
3
4

所以c=1…(2分)
又因為
c
a
=
2
2
,所以a2=2,b2=1.…(3分)
因此所求橢圓的方程為
x2
2
+y2=1
.…(4分)
(2)動直線l的方程為y=kx-
1
3
,
y=kx-
1
3
x2
2
+y2=1

(2k2+1)x2-
4
3
kx-
16
9
=0

設(shè)A(x1,y1),B(x2,y2).
x1+x2=
4k
3(2k2+1)
,x1x2=-
16
9(2k2+1)
.…(6分)
假設(shè)在y上存在定點M(0,m),滿足題設(shè),
MA
=(x1,y1-m),
MB
=(x2,y2-m)
MA
MB
=x1x2+(y1-m)(y2-m)=x1x2+y1y2-m(y1+y2)+m2

=x1x2+(kx1-
1
3
)(kx2-
1
3
)-m(kx1-
1
3
+kx2-
1
3
)+m2

=(k2+1)x1x2-k(
1
3
+m)(x1+x2)+m2+
2
3
m+
1
9

=-
16(k2+1)
9(2k2+1)
-k(
1
3
+m)
4k
3(2k2+1)
+m2+
2
3
m+
1
9

=
18(m2-1)k2+(9m2+6m-15)
9(2k2+1)

由假設(shè)得對于任意的k∈R,
MA
MB
=0
恒成立,
m2-1=0
9m2+6m-15=0
,
解得m=1.
故在y軸上存在定點M(0,1),
使得以AB為直徑的圓恒過這個點…(10分)
這時,點M到AB的距離d=
4
3
k2+1
,
|AB|=
(k2+1)(x1-x2)2

S△MAB=
1
2
|AB|d=
2
3
(x1-x2)2
=
2
3
(x1+x2)2-4x1x2
=
2
3
16k2
2(k2+1)2
+
64
9(2k2+1)
=
8
9
9k2+4
(2k2+1)2

設(shè)2k2+1=t,
k2=
t-1
2
,
t∈[1,+∞),
1
t
∈(0,1]

所以S△MAB=
8
9
9
2
(
1
t
)-
1
2
(
1
t
)
2
=
8
9
1
2
[
81
4
-(
1
t
-
9
2
)
2
]
16
9

當(dāng)且僅當(dāng)
1
t
=1
時,上式等號成立.
因此,△MAB面積的最大值是
16
9
.…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標(biāo)原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案