設(shè)函數(shù)f(x)=x2-1,對(duì)任意x∈,f-4m2f(x)≤f(x-1)+4f(m)恒成立,則實(shí)數(shù)m的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/9/b50ut.png" style="vertical-align:middle;" />,其圖象上任一點(diǎn)滿足,則給出以下四個(gè)命題:
①函數(shù)一定是偶函數(shù); ②函數(shù)可能是奇函數(shù);
③函數(shù)在單調(diào)遞增; ④若是偶函數(shù),其值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2b/3/aznzp.png" style="vertical-align:middle;" />
其中正確的序號(hào)為_(kāi)______________.(把所有正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=x無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒(méi)有實(shí)數(shù)根;
②若a>0,則不等式f(f(x))>x對(duì)一切實(shí)數(shù)x都成立;
③若a<0,則必存在實(shí)數(shù)x0,使f(f(x0))>x0;
④若a+b+c=0,則不等式f(f(x))<x對(duì)一切實(shí)數(shù)都成立;
⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒(méi)有交點(diǎn).
其中正確的結(jié)論是 (寫出所有正確結(jié)論的編號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
設(shè)函數(shù)f(x)的定義域?yàn)?i>D,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱函數(shù)f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=x是R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin 2x為R上的π高調(diào)函數(shù);
③如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知函數(shù)f(x)=ln,若f(a)+f(b)=0,且0<a<b<1,則ab的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com