【題目】5張獎(jiǎng)券中有2張是中獎(jiǎng)的,先由甲抽1張,然后由乙抽1張,求:

1)甲中獎(jiǎng)的概率

2)甲乙都中獎(jiǎng)的概率;

3)只有乙中獎(jiǎng)的概率.

【答案】1;(2;(3

【解析】

1)記甲中獎(jiǎng)為事件A,5張獎(jiǎng)券中有2張是中獎(jiǎng)的,由等可能事件的概率公式計(jì)算可得答案;

2)記甲、乙都中獎(jiǎng)為事件B,由(1)可得,首先由甲抽一張,中獎(jiǎng)的概率,分析此條件下乙中獎(jiǎng)的概率,由相互獨(dú)立事件的概率的乘法公式計(jì)算可得答案;

3)記只有乙中獎(jiǎng)為事件C,首先計(jì)算由對(duì)立事件的概率性質(zhì)計(jì)算甲沒(méi)有中獎(jiǎng)的概率,進(jìn)而分析此條件下乙中獎(jiǎng)的概率,由相互獨(dú)立事件的概率的乘法公式計(jì)算可得答案.

1)根據(jù)題意,甲中獎(jiǎng)為事件A

5張獎(jiǎng)券中有2張是中獎(jiǎng)的,則甲從中隨機(jī)抽取1張,則其中獎(jiǎng)的概率為.

2)記甲、乙都中獎(jiǎng)為事件B

由(1)可得,首先由甲抽一張,中獎(jiǎng)的概率為

若甲中獎(jiǎng),此時(shí)還有4張獎(jiǎng)券,其中1張有獎(jiǎng),則乙中獎(jiǎng)的概率為,

則甲、乙都中獎(jiǎng)的概率.

3)記只有乙中獎(jiǎng)為事件C,

首先甲沒(méi)有中獎(jiǎng),其概率為,

此時(shí)還有4張獎(jiǎng)券,其中2張有獎(jiǎng),則乙中獎(jiǎng)的概率為,

則只有乙中獎(jiǎng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點(diǎn), 上任意一點(diǎn).

1)證明:平面平面;

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(1)將兩曲線化成普通坐標(biāo)方程;

(2)求兩曲線的公共弦長(zhǎng)及公共弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司銷(xiāo)售甲、乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),甲產(chǎn)品的利潤(rùn)(萬(wàn)元)與投資額(萬(wàn)元)成正比,其關(guān)系如圖所示;乙產(chǎn)品的利潤(rùn)(萬(wàn)元)與投資額(萬(wàn)元)的算術(shù)平方根成正比,其關(guān)系式如圖所示.

1)分別將甲、乙兩種產(chǎn)品的利潤(rùn)表示為投資額的函數(shù);

2)若該公司投資萬(wàn)元資金,并全部用于甲、乙兩種產(chǎn)品的營(yíng)銷(xiāo),問(wèn):怎樣分配這萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中從事技術(shù)和運(yùn)營(yíng)崗位的人數(shù)占總?cè)藬?shù)的三成以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列中,在直線

(1)求數(shù)列{an}的通項(xiàng)公式

(2)令,數(shù)列的前n項(xiàng)和為

(ⅰ)求;

(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為函數(shù))圖象的一部分.

1)求函數(shù)的解析式,并寫(xiě)出的振幅、周期、初相.

2)求使得x的集合.

3)兩數(shù)的圖象可由兩數(shù)的圖象經(jīng)過(guò)怎樣的變換而得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足,且的最小值是.

(1)求的解析式;

(2)若關(guān)于的方程在區(qū)間上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(3)函數(shù),對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了反映各行業(yè)對(duì)倉(cāng)儲(chǔ)物流業(yè)務(wù)需求變化的情況,以及重要商品庫(kù)存變化的動(dòng)向,中國(guó)物流與采購(gòu)聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過(guò)聯(lián)合調(diào)查,制定了中國(guó)倉(cāng)儲(chǔ)指數(shù).由2016年1月至2017年7月的調(diào)查數(shù)據(jù)得出的中國(guó)倉(cāng)儲(chǔ)指數(shù),繪制出如下的折線圖.

根據(jù)該折線圖,下列結(jié)論正確的是( )

A. 2016年各月的合儲(chǔ)指數(shù)最大值是在3月份

B. 2017年1月至7月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)為55

C. 2017年1月與4月的倉(cāng)儲(chǔ)指數(shù)的平均數(shù)為52

D. 2016年1月至4月的合儲(chǔ)指數(shù)相對(duì)于2017年1月至4月,波動(dòng)性更大

查看答案和解析>>

同步練習(xí)冊(cè)答案