【題目】如圖,在平面直角坐標系xOy中,點在拋物線上,直線與拋物線C交于A,B兩點,且直線OA,OB的斜率之和為.
(1)求a和k的值;
(2)若,設直線與y軸交于D點,延長MD與拋物線C交于點N,拋物線C在點N處的切線為n,記直線n,與x軸圍成的三角形面積為S.求S的最小值.
【答案】(1),;(2).
【解析】
(1)將點代入拋物線,得,設,,,將直線的方程與拋物線方程聯(lián)立,可得出的值.
(2)由(1)得直線的方程,可得,所以,則直線DM的方程為:,聯(lián)立,可得到,利用導數(shù)求出切線n的方程,解出點的坐標,得到三角形的面積表達式,利用導數(shù)求出最大值.
解:(1)將點代入拋物線,得,
由,得,
設,,
則,,
故
由已知直線OA.OB的斜率之和為,故;
(2)在直線的方程中,
令得,,
直線DM的方程為:,
即
由,得,
解得:或,所以,
由,得,,
切線n的斜率,
切線n的方程為:,即,
由,得直線l、n交點Q,縱坐標
設直線,與x軸的交點,,
在直線,方程中令.
得到點,,
所以,
,.
當,函數(shù)單調(diào)遞減;當時,函數(shù)單調(diào)遞增;
∴當時,S最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網(wǎng)站年月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促銷費用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
產(chǎn)品銷量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根據(jù)數(shù)據(jù)可知與具有線性相關關系,請建立關于的回歸方程(系數(shù)精確到);
(2)已知月份該購物網(wǎng)站為慶祝成立周年,特定制獎勵制度:用(單位:件)表示日銷量,若,則每位員工每日獎勵元;若,每位員工每日獎勵元;若,則每位員工每日獎勵元.現(xiàn)已知該網(wǎng)站月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約為多少元.(當月獎勵金額總數(shù)精確到百分位)
參考數(shù)據(jù):,,其中分別為第個月的促銷費用和產(chǎn)品銷量,.
參考公式:①對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計分別為,.
②若隨機變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:經(jīng)過點,且離心率.
(1)求橢圓E的方程;
(2)設橢圓E的右頂點為A,若直線與橢圓E相交于MN兩點(異于A點),且滿足,試證明直線l經(jīng)過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計這100名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(3)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認為“比賽成績是否優(yōu)秀與性別有關”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“干支紀年法”是中國歷法自古以來就使用的紀年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸為十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥為十二地支.“干支紀年法”是以一個天干和一個地支按上述順序相配排列起來,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此類推,則2080年是____________年.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)與的圖象在它們的交點處具有相同的切線.
(1)求的解析式;
(2)若函數(shù)有兩個極值點,,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且,拋物線的通徑與橢圓的右通徑在同一直線上.
(1)求橢圓與拋物線的標準方程;
(2)過拋物線焦點且傾斜角為的直線與橢圓交于、兩點,為橢圓的左焦點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線 ,直線與拋物線相交于兩點,且當傾斜角為的直線經(jīng)過拋物線的焦點時,有.
(1)求拋物線的方程;
(2)已知圓,是否存在傾斜角不為的直線,使得線段被圓截成三等分?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com