【題目】設(shè)橢圓 ()的一個焦點為橢圓內(nèi)一點,若橢圓上存在一點,使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

【答案】A

【解析】

記橢圓的左焦點為 , , ,橢圓的離心率的取值范圍是,故選A.

【方法點晴】本題主要考查利用橢圓定與性質(zhì)求橢圓的離心率,屬于難題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率范圍問題應(yīng)先將 用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式,從而求出的范圍.本題是利用橢圓的定義以及三角形兩邊與第三邊的關(guān)系構(gòu)造出關(guān)于的不等式,最后解出的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如下,已知分數(shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分數(shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準備從分數(shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的數(shù)學(xué)成績達到130分,請你估計他的物理成績大約是多少?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建筑公司打算在一處工地修建一座簡易儲物間.該儲物間室內(nèi)地面呈矩形形狀,面積為,并且一面緊靠工地現(xiàn)有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號彩鋼板價格為100/米,整理地面及防雨布總費用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長度為.

1)用表示修建儲物間的總造價(單位:元);

2)如何設(shè)計該儲物間,可使總造價最低?最低總造價為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國Ⅱ卷)如圖,四棱錐PABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCAD,BADABC90°EPD的中點.

(1)證明:直線CE∥平面PAB;

(2)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中,四邊形為菱形,且中點.

(Ⅰ)求證: 平面;

(Ⅱ)若平面平面,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)與函數(shù)g(x)的圖像關(guān)于原點對稱,且f(x)= +2x, 若函數(shù)F(x)=g(x)-f(x)+1在區(qū)間上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與圓C相交,截得的弦長為.

1)求圓C的方程;

2)過原點O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(異于原點),證明:直線與圓C相切;

3)若函數(shù)圖象上任意三個不同的點P、Q、R,且滿足直線都與圓C相切,判斷線與圓C的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線為

)若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形.

(1)求出,,并猜測的表達式;

(2)求證:.

查看答案和解析>>

同步練習(xí)冊答案