【題目】已知橢圓的左,右焦點(diǎn)分別為,離心率為,上的一個動點(diǎn).當(dāng)的上頂點(diǎn)時,的面積為

1)求的方程;

2)設(shè)斜率存在的直線的另一個交點(diǎn)為.若存在點(diǎn),使得,求的取值范圍.

【答案】(1);(2)

【解析】

1)結(jié)合橢圓性質(zhì),計算a,b的值,得到橢圓方程,即可。(2)設(shè)出直線PQ的方程,代入橢圓方程,利用韋達(dá)定理,建立等式,用k表示t,結(jié)合函數(shù)的性質(zhì),計算范圍,即可。

(1)設(shè)橢圓的半焦距為c。

因為,所以,,

所以.

所以C得方程為

(2)設(shè)直線PQ的方程為,PQ的中點(diǎn)為.

當(dāng)k=0時,t=0符合題意.

當(dāng)k≠0時,由

所以

因為,

所以TNPQ,則KTN·k=-1,

所以

因為,所以.

綜上,t的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.

為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量的值依次為1,2,…,17)建立模型

;

根據(jù)2010年至2016年的數(shù)據(jù)(時間變量的值依次為1,2,…,7)建立模型

.

利用這兩個模型,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值分別為_____,_____;并且可以判斷利用模型_____得到的預(yù)測值更可靠.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,bsinA=cosB.

1)求角B的大;

2)若b=2,ABC的面積為,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查民眾對國家實行新農(nóng)村建設(shè)政策的態(tài)度,現(xiàn)通過網(wǎng)絡(luò)問卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農(nóng)村建設(shè)人數(shù)如下表:

(1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以50歲為分界點(diǎn)對新農(nóng)村建設(shè)政策的支持度有差異;

(2)現(xiàn)從年齡在[7080]內(nèi)的5名被調(diào)查人中任選兩人去參加座談會,求選出兩人中恰有一人支持新農(nóng)村建設(shè)的概率.

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若在兩個成語中,一個成語的末字恰是另一成語的首字,則稱這兩個成語有頂真關(guān)系,現(xiàn)從分別貼有成語人定勝天、爭先恐后一馬當(dāng)先、天馬行空先發(fā)制人5張大小形狀完全相同卡片中,任意抽取2張,則這2張卡片上的成語有頂真關(guān)系的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機(jī)抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)為5組: , , ,得到如圖所示的頻率分布直方圖:

)寫出的值;

)求在抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15次的學(xué)生人數(shù);

)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機(jī)抽取2人,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點(diǎn),在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,而且優(yōu)質(zhì)品檢驗異常嚴(yán)格,檢驗方案是:先從燒制的這批唐三彩中任取 3件作檢驗,這3件唐三彩中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批唐三彩中任取3件作檢驗,若都為優(yōu)質(zhì)品,則這批唐三彩通過檢驗;如果,再從這批唐三彩中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批唐三彩通過檢驗;其他情況下,這批唐三彩都不能通過檢驗.假設(shè)這批唐三彩的優(yōu)質(zhì)品概率為,即取出的每件唐三彩是優(yōu)質(zhì)品的概率都為,且各件唐三彩是否為優(yōu)質(zhì)品相互獨(dú)立.

(1)求這批唐三彩通過優(yōu)質(zhì)品檢驗的概率;

(2)已知每件唐三彩的檢驗費(fèi)用為100元,且抽取的每件唐三彩都需要檢驗,對這批唐三彩作質(zhì)量檢驗所需的總費(fèi)用記為元,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過右焦點(diǎn)F與長軸垂直的直線與橢圓在第一象限相交于點(diǎn)M,

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)斜率為1的直線l與橢圓相交于B,D兩點(diǎn),若以線段BD為直徑的圓恰好過坐標(biāo)原點(diǎn),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案