(2012•煙臺一模)已知f(x)是定義在R上的奇函數(shù),當x≥0時f(x)=3x+m(m為常數(shù)),則f(-log35)的值為( 。
分析:由題設條件可先由函數(shù)在R上是奇函數(shù)求出參數(shù)m的值,求函數(shù)函數(shù)的解板式,再由奇函數(shù)的性質(zhì)得到f(-log35)=-f(log35)代入解析式即可求得所求的函數(shù)值,選出正確選項
解答:解:由題意,f(x)是定義在R上的奇函數(shù),當x≥0時f(x)=3x+m(m為常數(shù)),
∴f(0)=30+m=0,解得m=-1,故有x≥0時f(x)=3x-1
∴f(-log35)=-f(log35)=-(3log35-1)=-4
故選B
點評:本題考查函數(shù)奇偶性質(zhì),解題的關(guān)鍵是利用f(0)=0求出參數(shù)m的值,再利用性質(zhì)轉(zhuǎn)化求值,本題考查了轉(zhuǎn)化的思想,方程的思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•煙臺一模)函數(shù)y=
ln|x|
x
的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•煙臺一模)定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù); 
②f′(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•煙臺一模)若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤15
則w=log3(2x+y)的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•煙臺一模)已知命題p:“a=1是x>0,x+
a
x
≥2的充分必要條件”,命題q:“存在x0∈R,x02+x0-2>0”,則下列命題正確的是( 。

查看答案和解析>>

同步練習冊答案