【題目】函數(shù)的定義域為,若存在一次函數(shù),使得對于任意的,都有恒成立,則稱函數(shù)在上的弱漸進函數(shù).下列結(jié)論正確的是______.(寫出所有正確命題的序號)
①是在上的弱漸進函數(shù);
②是在上的弱漸進函數(shù);
③是在上的弱漸進函數(shù);
④是在上的弱漸進函數(shù).
【答案】①④
【解析】
根據(jù)弱漸進函數(shù)的新定義,對4個命題分別構(gòu)建
①構(gòu)建關(guān)系,并分子有理化,由不等式性質(zhì)可知符合題意,正確;
②構(gòu)建關(guān)系,由雙勾函數(shù)值域可知不符合題意,錯誤;
③構(gòu)建關(guān)系,取特值,其絕對值大于1,不符合題意,錯誤;
④構(gòu)建關(guān)系,求導(dǎo)分析單調(diào)性,求得值域,符合題意,正確.
①由于,所以,所以,所以①正確;
②設(shè),當時,,不符合,所以②錯誤;
③設(shè),,,不符合,所以③錯誤;
④設(shè),,當時,,在上單調(diào)遞減,所以;又時,,,即,所以,④正確,綜上,①④正確.
故答案為:①④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若橢圓的離心率等于,拋物線的焦點在橢圓的頂點上.
(1)求拋物線的方程;
(2)若過的直線與拋物線交于、兩點,又過、作拋物線的切線、,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,某窯洞窗口形狀上部是圓弧,下部是一個矩形,圓弧所在圓的圓心為O,經(jīng)測量米,米,,現(xiàn)根據(jù)需要把此窯洞窗口形狀改造為矩形,其中E,F在邊上,G,H在圓弧上.設(shè),矩形的面積為S.
(1)求矩形的面積S關(guān)于變量的函數(shù)關(guān)系式;
(2)求為何值時,矩形的面積S最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某果園種植“糖心蘋果”已有十余年,為了提高利潤,該果園每年投入一定的資金,對種植采摘包裝宣傳等環(huán)節(jié)進行改進.如圖是2009年至2018年,該果園每年的投資金額(單位:萬元)與年利潤增量(單位:萬元)的散點圖:
該果園為了預(yù)測2019年投資金額為20萬元時的年利潤增量,建立了關(guān)于的兩個回歸模型;
模型①:由最小二乘公式可求得與的線性回歸方程:;
模型②:由圖中樣本點的分布,可以認為樣本點集中在曲線:的附近,對投資金額做交換,令,則,且有,,,.
(1)根據(jù)所給的統(tǒng)計量,求模型②中關(guān)于的回歸方程;
(2)分別利用這兩個回歸模型,預(yù)測投資金額為20萬元時的年利潤增量(結(jié)果保留兩位小數(shù));
(3)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并說明誰的預(yù)測值精度更高更可靠.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
102.28 | 36.19 |
附:樣本的最小乘估計公式為,;
相關(guān)指數(shù).
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個半圓柱與多面體構(gòu)成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動點.
(1)證明: 平面;
(2)若四邊形為正方形,且, ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形且側(cè)棱垂直與底面的棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,.
(1)證明:直線平面;
(2)已知,且三棱錐A-A1B1D1的體積,求該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù)).
(1)討論的單調(diào)性;
(2)當時,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使成立,求整數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com