【題目】已知雙曲線的右焦點(diǎn)為點(diǎn),點(diǎn)是虛軸的一個(gè)端點(diǎn),點(diǎn)為雙曲線左支上的一個(gè)動(dòng)點(diǎn),則周長(zhǎng)的最小值等于____________.
【答案】4
【解析】
先由雙曲線的幾何性質(zhì)寫(xiě)出B和F的坐標(biāo),并求得|BF|的長(zhǎng),然后設(shè)雙曲線的左焦點(diǎn)為E,由雙曲線的定義可知,|PF|﹣|PE|=2a,而△BPF的周長(zhǎng)為|BF|+|PF|+|PB|=|BF|+2a+(|PE|+|PB|),求出|PE|+|PB|的最小值即可得△BPF周長(zhǎng)的最小值,當(dāng)且僅當(dāng)B、P、E三點(diǎn)共線時(shí),可得解.
∵雙曲線,∴F,
如圖所示,不妨設(shè)B為x軸上方的虛軸端點(diǎn),則B(0,1),|BF|=2,
設(shè)雙曲線的左焦點(diǎn)為E,由雙曲線的定義可知,|PF|﹣|PE|=2a,即|PF|=|PE|,
∴△BPF的周長(zhǎng)為|BF|+|PF|+|PB|=|BF|+(|PE|)+|PB|=2|PE|+|PB|≥2|BE|=4,
當(dāng)且僅當(dāng)B、P、E三點(diǎn)共線時(shí),等號(hào)成立.
所以△BPF周長(zhǎng)的最小值等于4.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬(wàn)件
B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過(guò)50%,在3月底最高
C. 從兩圖來(lái)看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致
D. 從1~4月來(lái)看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為正方形,平面,,點(diǎn)為線段的動(dòng)點(diǎn).記與所成角的最小值為,當(dāng)為線段中點(diǎn)時(shí),二面角的大小為,二面角的大小為,則,,的大小關(guān)系是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在長(zhǎng)方體中,,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),則①的最小值等于__________;②直線與平面所成角的正切值的取值范圍為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an},對(duì)任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常數(shù)).
(1)當(dāng)k=0,b=3,p=﹣4時(shí),求a1+a2+a3+…+an;
(2)當(dāng)k=1,b=0,p=0時(shí),若a3=3,a9=15,求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{an}中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng)k=1,b=0,p=0時(shí),設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a2﹣a1=2,試問(wèn):是否存在這樣的“封閉數(shù)列”{an},使得對(duì)任意n∈N*,都有Sn≠0,且.若存在,求數(shù)列{an}的首項(xiàng)a1的所有取值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,過(guò)橢圓:右焦點(diǎn)的直線交于,兩點(diǎn),且橢圓的離心率為.
(1)求橢圓的方程;
(2),為上的兩點(diǎn),若四邊形的對(duì)角線,求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com