如圖,四棱錐P-ABCD的底面ABCD為菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E為PA的中點(diǎn).
(1)求證:PC∥平面EBD;
(2)求三棱錐C-PAD的體積VC-PAD
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(1)設(shè)AC、BD相交于點(diǎn)F,連結(jié)EF,由已知條件得EF∥PC,由此能證明PC∥平面EBD.
(2)由已知條件得△ACD是邊長(zhǎng)為2的正三角形,由PA⊥底面ABCD,得PA為三棱錐P-ACD的高,由此能求出三棱錐C-PAD的體積VC-PAD
解答: (1)證明:設(shè)AC、BD相交于點(diǎn)F,連結(jié)EF,
∵底面ABCD為菱形,∴F為AC的中點(diǎn),
又∵E為PA的中點(diǎn),∴EF∥PC,…(3分)
又∵EF不包含于平面EBD,PC?平面EBD,
∴PC∥平面EBD. …(6分)
(2)解:因?yàn)榈酌鍭BCD為菱形,∠ABC=60°,
所以△ACD是邊長(zhǎng)為2的正三角形,…(8分)
又因?yàn)镻A⊥底面ABCD,所以PA為三棱錐P-ACD的高,
所以,VC-PAD=
1
3
S△ACD
•PA=
1
3
×
3
4
×22×2
=
2
3
3
.…(12分)
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a,設(shè)SB的中點(diǎn)為M,DM⊥MC.
(1)求證:DM⊥平面SBC;
(2)求四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F1與拋物線y2=4x的焦點(diǎn)重合,原點(diǎn)到過(guò)點(diǎn)A(a,0),B(0,-b)的直線的距離是
2
7
21

(1)求橢圓C的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓C有且只有一個(gè)公共點(diǎn)P,過(guò)F1作PF1的垂直于直線l交于點(diǎn)Q,求證:點(diǎn)Q在定直線上,并求出定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C1:2x2-y2=2m2(m>0),拋物線C2頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)正好是雙曲線C1的左焦點(diǎn)F.問(wèn):是否存在過(guò)F且不垂直于x軸的直線l,使l與拋物線C2交于兩點(diǎn)P,Q,并且△POQ的面積為6,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-3x+3)ex,x∈[-2,a],a>-2,其中e是自然對(duì)數(shù)的底數(shù).
(1)若a<1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求證:f(a)>
13
e2
;
(3)對(duì)于定義域?yàn)镈的函數(shù)y=g(x),如果存在區(qū)間[m,n]⊆D,使得x∈[m,n]時(shí),y=g(x)的值域是[m,n],則稱[m,n]是該函數(shù)y=g(x)的“保值區(qū)間”.設(shè)h(x)=f(x)+(x-2)ex,x∈(1,+∞),問(wèn)函數(shù)y=h(x)是否存在“保值區(qū)間”?若存在,請(qǐng)求出一個(gè)“保值區(qū)間”; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在五面體ABCDE中,EA=ED=EC=2,且EA,ED,EC兩兩垂直,AB∥CE,AB=1,F(xiàn)為CD的中點(diǎn).
(1)求五面體ABCDE的體積.
(2)求證:BF∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷并證明函數(shù)f(x)=x+
1
x
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(ωx+φ)+C(A>0,ω>0,|φ|<
π
2
)在同一周期中最高點(diǎn)坐標(biāo)為(2,2),最低點(diǎn)坐標(biāo)為(8,-4),求
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,對(duì)稱中心坐標(biāo)和對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B為相距2km的兩個(gè)工廠,以AB的中點(diǎn)O為圓心,半徑為2km畫圓。甅N為圓弧上兩點(diǎn),且MA⊥AB,NB⊥AB,在圓弧MN上一點(diǎn)P處建一座學(xué)校.學(xué)校P受工廠A的噪音影響度與AP的平方成反比,比例系數(shù)為1,學(xué)校P受工廠B的噪音影響度與BP的平方成反比,比例系數(shù)為4.學(xué)校P受兩工廠的噪音影響度之和為y,且設(shè)AP=xkm.
(1)求y=f(x),并求其定義域;
(2)當(dāng)AP為多少時(shí),總噪音影響度最小?

查看答案和解析>>

同步練習(xí)冊(cè)答案