已知f(x)為偶函數(shù),f(2)+f(-5)=4,求f(-2)+f(5)=( 。
A、4B、-4C、2D、-5
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.
解答: 解:∵f(x)為偶函數(shù),f(2)+f(-5)=4,
∴f(2)+f(5)=4,
則f(-2)+f(5)=f(2)+f(5)=4,
故選:A
點評:本題主要考查函數(shù)值的計算,根據(jù)函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c表示三條直線,α、β表示兩個平面,則下列命題中不正確的是( 。
A、
c⊥α
α∥β
⇒c⊥β
B、
a∥α
b⊥a
⇒b⊥α
C、
b∥c
b?α
c?α
⇒c∥α
D、
a⊥b
b?β
c是a在β
內(nèi)的射影
⇒b⊥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)y=f(x)在[0,7]上只有1和3兩個零點,且y=f(2-x)與y=(7+x)都是偶函數(shù),則函數(shù)y=f(x)在[-2013,2013]上的零點個數(shù)為(  )
A、804B、805
C、806D、807

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列調(diào)查方式:
①學(xué)校為了解高一學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,從每班抽2人進行座談;
②一次數(shù)學(xué)競賽中,某班有15人在100分以上,35人在90~100分,10人低于90分.現(xiàn)在從中抽取12人座談了解情況;
③運動會中工作人員為參加400m比賽的6名同學(xué)公平安排跑道.
就這三個調(diào)查方式,最合適的抽樣方法依次為( 。
A、分層抽樣,系統(tǒng)抽樣,簡單隨機抽樣
B、系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣
C、分層抽樣,簡單隨機抽樣,簡單隨機抽樣
D、系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x-2>0”是“x>1”的(  )
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,過右焦點F1作與坐標軸垂直的弦且弦長為
2

(1)求橢圓的標準方程;
(2)若直線l:y=-x+m與橢圓C交于A,B兩點,當以AB為直徑的圓與y軸相切時,求△F1AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱(側(cè)棱與底面垂直的三棱柱)ABC-A1B1C1中,AB=8,AC=6,BC=10,D是BC邊的中點.
(1)求證:AB⊥
A
 
1
C
;   
(2)求證:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)令g(x)=f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然對數(shù)的底數(shù)時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
25
+
y2
9
=1上一點到兩焦點的距離之積為m,求m取最大值時的P點的坐標.

查看答案和解析>>

同步練習(xí)冊答案