【題目】已知函數(shù)f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函數(shù),求b的取值范圍;

(2)若f(x)在x=1處取得極值,且x[-1,2]時,f(x)<c2恒成立,求c的取值范圍.

【答案】(1);(2)

【解析】分析:(1)求出的導(dǎo)函數(shù),進而根據(jù)上是增函數(shù),則恒成立,構(gòu)造關(guān)于b的不等式,解不等式即可得到答案;

(2)當(dāng)時取得極值時,則是方程的一個根,從而可以求出方程的另一個根,進而分析出區(qū)間的單調(diào)性,進而確定出函數(shù)在區(qū)間的最大值,進而構(gòu)造關(guān)于c的不等式,從而求得答案.

詳解:(1)由f(x)=+bx+c,f'(x)=3x2-x+b.

f(x)(-∞,+∞)上是增函數(shù),

Δ=1-12b≤0,解得b≥

故b的取值范圍

(2)∵f(x)x=1

∴f'(1)=2+b=0,

∴b=-2.

f(x)=x-2x+c,f'(x)=3x2-x-2.

f'(x)=0,x=x=1.

x<f'(x)>0,,f'(x)<0,當(dāng)x>1時,f'(x)>0,故f(x)x=x∈[-1,2],f(-1f(2)=2+c.此時,f(x)max=f(2)=2+c.

由題意得,2+c<c2,解得c>2c<-1.

c的取值范圍為(-∞,-1)∪(2,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結(jié)論:

①三棱錐體積的最大值為;

直線PB與平面PAQ所成角的最大值為;

當(dāng)直線BQAP所成角最小時,其正弦值為;

④直線BQAP所成角的最大值為;

其中正確的結(jié)論有___________.(寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.

1)已知,求

2)對任意的,恒成立,求的取值范圍;

3)若,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題為(
A.存在四邊相等的四邊形不是正方形
B.z1 , z2∈C,z1+z2為實數(shù)的充分必要條件是z1 , z2互為共軛復(fù)數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N* , + +…+ 都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) +(1﹣α) ,其中0<α< ,則n,m的大小關(guān)系為( )
A.n<m
B.n>m
C.n=m
D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校倡導(dǎo)為特困學(xué)生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:

售出水量(單位:箱)

7

6

6

5

6

收入(單位:元)

165

142

148

125

150

學(xué)校計劃將捐款以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學(xué)金500元;綜合考核21-50名,獲二等獎學(xué)金300元;綜合考核50名以后的不獲得獎學(xué)金.

(1)若成線性相關(guān),則某天售出9箱水時,預(yù)計收入為多少元?

(2)甲乙兩名學(xué)生獲一等獎學(xué)金的概率均為,獲二等獎學(xué)金的概率均為,不獲得獎學(xué)金的概率均為,已知甲乙兩名學(xué)生獲得哪個等級的獎學(xué)金相互獨立,求甲乙兩名學(xué)生所獲得獎學(xué)金之和的分布列及數(shù)學(xué)期望;

附:回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三點O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點M(x,y)滿足| + |= + )+2.
(1)求曲線C的方程;
(2)動點Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點Q處的切線為直線l:是否存在定點P(0,t)(t<0),使得l與PA,PB都相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一位同學(xué)家里開了一個小賣部,他為了研究氣溫對熱茶銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出熱茶杯數(shù)與當(dāng)天氣溫的對比表如下:

氣溫x/

-5

0

4

7

12

15

19

23

27

31

36

熱茶銷售杯數(shù)y/杯

156

150

132

128

130

116

104

89

93

76

54

(1)畫出散點圖;

(2)你能從散點圖中發(fā)現(xiàn)氣溫與熱茶的銷售杯數(shù)之間關(guān)系的一般規(guī)律嗎?

(3)如果近似成線性關(guān)系的話,請畫出一條直線來近似地表示這種線性關(guān)系;

(4)試求出回歸直線方程;

(5)利用(4)的回歸方程,若某天的氣溫是2 ,預(yù)測這一天賣出熱茶的杯數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的A,B,C三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為K(K為正整數(shù)).
(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時間;
(2)假設(shè)這三種部件的生產(chǎn)同時開工,試確定正整數(shù)K的值,使完成訂單任務(wù)的時間最短,并給出時間最短時具體的人數(shù)分組方案.

查看答案和解析>>

同步練習(xí)冊答案