如果不等式
2x2+2mx+m
4x2+6x+3
<1對(duì)一切實(shí)數(shù)x均成立,則實(shí)數(shù)m的取值范圍是(  )
A、(1,3)
B、(-∞,3)
C、(-∞,1)∪(2,+∞)
D、(-∞,+∞)
考點(diǎn):函數(shù)恒成立問(wèn)題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:不等式式
2x2+2mx+m
4x2+6x+3
<1對(duì)一切實(shí)數(shù)x均成立,等價(jià)于 2x2+2(3-m)x+(3-m)>0 對(duì)一切實(shí)數(shù)x均成立,利用判別式小于0,即可求出實(shí)數(shù)m的取值范圍.
解答: 解:不等式式
2x2+2mx+m
4x2+6x+3
<1對(duì)一切實(shí)數(shù)x均成立,
等價(jià)于 2x2+2(3-m)x+(3-m)>0 對(duì)一切實(shí)數(shù)x均成立
∴[2(3-m)]2-4×2×(3-m)<0,
故m的取值范圍為(1,3).
故選:A.
點(diǎn)評(píng):本題考查了函數(shù)的恒成立問(wèn)題.對(duì)于函數(shù)的恒成立問(wèn)題,一般選用參變量分離法、最值法、數(shù)形結(jié)合法進(jìn)行求解.本題解題的關(guān)鍵是運(yùn)用二次函數(shù)的性質(zhì)進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式(組)0≤x2-
1
3
x-
2n
(2n+1)2
2
9
任意n∈N*恒成立,則所有這樣的解x的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=3x+3x-8,且f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0,則函數(shù)f(x)的零點(diǎn)落在區(qū)間(  )
A、(1,1.25)
B、(1.25,1.5)
C、(1.5,2)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知A、B、C三點(diǎn)不共線,O是平面ABC外的一點(diǎn),點(diǎn)P在平面ABC內(nèi),且滿足
OP
=
OA
+
OB
+m
OC
,則實(shí)數(shù)m的值為( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是三角形ABC的外心,AB=2,AC=5,若
AO
=x
AB
+y
AC
,且x+4y=2,則三角形ABC的面積為( 。
A、
5
39
4
B、
5
39
8
C、
5
39
16
D、
5
39
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知l1,l2,l是同一平面內(nèi)的三條直線,l1⊥l,l2與l不垂直,求證:l1與l2必相交.
證明:假設(shè)l1與l2不相交,則l1∥l2,所以∠1=∠2.
因?yàn)閘2與l不垂直,
所以∠2≠90°,所以∠1≠90°,
所以l1不是l的垂線,與已知條件矛盾,
所以l1與l2必相交.
本題所采用的證明方法是( 。
A、分析法B、綜合法
C、反證法D、歸納法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,
AB
=
a
,
AD
=
b
,
AN
=3
NC
,則
BN
=(  )(用
a
,
b
表示)
A、
1
4
a
-
3
4
b
B、
3
4
a
-
1
4
b
C、
1
4
b
-
3
4
a
D、
3
4
b
-
1
4
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱柱ABCD-A1B1C1D1的棱長(zhǎng)都為a,底面ABCD是菱形,且∠BAD=60°,側(cè)棱A1A⊥平面ABCD,F(xiàn)為棱B1B的中點(diǎn),M為線段AC1的中點(diǎn).
(Ⅰ)求證:平面AFC1⊥平面A1C1AC;
(Ⅱ)求三棱錐C1-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非零向量
a
,
b
,滿足|
a
|=1且(
a
-
b
)•(
a
+
b
)=
1
2

(1)若
a
b
=
1
2
,求向量
a
,
b
的夾角;
(2)在(1)的條件下,求|
a
-
b
|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案