【題目】算法的三種基本結(jié)構(gòu)是( )
A. 順序結(jié)構(gòu)、模塊結(jié)構(gòu)、條件結(jié)構(gòu) B. 順序結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、模塊結(jié)構(gòu)
C. 順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu) D. 模塊結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人拋擲一枚硬幣100次,結(jié)果正面朝上53次,設(shè)正面朝上為事件A,則事件A出現(xiàn)的頻數(shù)為_____,事件A出現(xiàn)的頻率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓:關(guān)于直線對(duì)稱,且點(diǎn)在圓上.
(1)判斷圓與圓的位置關(guān)系;
(2)設(shè)為圓上任意一點(diǎn),,,三點(diǎn)不共線,為的平分線,且交于. 求證:與的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,半徑為2的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)若直線過點(diǎn)且與圓交于兩點(diǎn)(在軸上方,在軸下方),問在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.
(Ⅰ)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(Ⅱ)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)年級(jí)有16個(gè)班級(jí),每個(gè)班級(jí)學(xué)生從1到50號(hào)編排,為了交流學(xué)習(xí)經(jīng)驗(yàn),要求每班編號(hào)為14的同學(xué)留下進(jìn)行交流,這里運(yùn)用的是 ( )
A. 分層抽樣 B. 抽簽法 C. 系統(tǒng)抽樣 D. 隨機(jī)數(shù)表法
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).
(1)求的值;
(2)若,試判斷的單調(diào)性(不需證明),并求使不等式恒成立的t的取值范圍;
(3)若,,求在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若用斜二測(cè)畫法把一個(gè)高為10 cm的圓柱的底面畫在x′O′y′平面上,則該圓柱的高應(yīng)畫成( )
A. 平行于z′軸且長(zhǎng)度為10 cm
B. 平行于z′軸且長(zhǎng)度為5 cm
C. 與z′軸成45°且長(zhǎng)度為10 cm
D. 與z′軸成45°且長(zhǎng)度為5 cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com