如圖所示,在四面體中,,,兩兩互相垂直,且.
(1)求證:平面平面;
(2)求二面角的大;
(3)若直線與平面所成的角為,求線段的長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題15分)如圖,AC 是圓 O 的直徑,點(diǎn) B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點(diǎn) M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.
(I)證明:EM⊥BF;
(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題13分)在幾何體ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點(diǎn),AB=AC=BE=2,CD=1.
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE;
(3)求幾何體ABCDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正方形的邊長(zhǎng)為2,.將正方形沿對(duì)角線折起,
使,得到三棱錐,如圖所示.
(1)當(dāng)時(shí),求證:;
(2)當(dāng)二面角的大小為時(shí),求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點(diǎn),現(xiàn)將△ADE沿直線DE翻折成△,使平面⊥平面BCDE,F(xiàn)為線段的中點(diǎn). ks5u
(Ⅰ)求證:EF∥平面;
(Ⅱ)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是矩形,底面,是的中點(diǎn),已知,,,求:(Ⅰ)三角形的面積;(II)三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知矩形周長(zhǎng)為20,矩形繞他的一條邊旋轉(zhuǎn)形成一個(gè)圓柱。問(wèn)矩形的長(zhǎng)、寬各為多少時(shí),旋轉(zhuǎn)形成的圓柱的側(cè)面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和.
(Ⅰ)求該圓臺(tái)的母線長(zhǎng);
(Ⅱ)求該圓臺(tái)的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com