(2013•珠海二模)某高!敖y(tǒng)計初步”課程的教師隨機(jī)調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表.為了檢驗主修統(tǒng)計專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到Χ2=
50(13×20-10×7)2
23×27×20×30
≈4.84
因為Χ2>3.841,所以斷定主修統(tǒng)計專業(yè)與性別有關(guān)系,這種判斷出錯的可能性最高為
5%
5%

       專業(yè)
性別
非統(tǒng)計專業(yè) 統(tǒng)計專業(yè)
13 10
7 20
P(K2≥k) 0.050 0.025 0.010 0.001
k 3.841 5.024 6.635 10.828
分析:由題意知根據(jù)表中所給的數(shù)據(jù)得到觀測值是4.84,從臨界值表中可以知道4.84>3.841,根據(jù)臨界值表中所給的概率得到與本題所得的數(shù)據(jù)對應(yīng)的概率是0.05,得到結(jié)論.
解答:解:∵由題意知為了判斷主修統(tǒng)計專業(yè)是否與性別有關(guān)系,
根據(jù)表中的數(shù)據(jù),得到Χ2=
50(13×20-10×7)2
23×27×20×30
≈4.84
,
∵X2≥3.841,
由臨界值表可以得到P(K2≥3.841)=0.05
∴判定主修統(tǒng)計專業(yè)與性別有關(guān)系的這種判斷出錯的可能性最高為0.05=5%.
故答案為:5%.
點(diǎn)評:本題考查獨(dú)立性檢驗的應(yīng)用,本題是一個形式比較新穎的題目,省去了較麻煩的運(yùn)算,條件中給出的是運(yùn)算后的結(jié)果,本題解題的關(guān)鍵是就由原來的運(yùn)算轉(zhuǎn)化成對于臨界值表中所給的概率的理解,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)設(shè)i為虛數(shù)單位,則復(fù)數(shù)
4+3i
i
的虛部為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知函數(shù)f(x)=
x2-ax+1
4x-4×2x-a
,
x≥a
x<a
,
(1)若x<a時,f(x)<1恒成立,求實數(shù)a的取值范圍;
(2)若a≥-4時,函數(shù)f(x)在實數(shù)集R上有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知集合A={x|-1≤-x<2},B={x|-x≥0},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知非零向量
a
b
滿足
a
b
,則函數(shù)f(x)=(
a
x+
b
)2(x∈R)
是( 。

查看答案和解析>>

同步練習(xí)冊答案