直線和圓交于兩點(diǎn),則的中點(diǎn)坐
標(biāo)為(   )
                        
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖所示,橢圓C 的兩個(gè)焦點(diǎn)為、,短軸兩個(gè)端點(diǎn)為、.已知、、 成等比數(shù)列,,與 軸不垂直的直線 與C 交于不同的兩點(diǎn)、,記直線、的斜率分別為、,且
(Ⅰ)求橢圓 的方程;
(Ⅱ)求證直線 與 軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo);
(Ⅲ)當(dāng)弦 的中點(diǎn)落在四邊形 內(nèi)(包括邊界)時(shí),求直線 的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
若一動點(diǎn)F到兩定點(diǎn)、的距離之和為4.
(Ⅰ)求動點(diǎn)F的軌跡方程;
(Ⅱ)設(shè)動點(diǎn)F的軌跡為曲線C,在曲線C任取一點(diǎn)P,過點(diǎn)P作軸的垂線段PD,D為垂足,當(dāng)P在曲線C上運(yùn)動時(shí),線段PD的中點(diǎn)M的軌跡是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是圓上滿足條件的兩個(gè)點(diǎn),其中O是坐標(biāo)原點(diǎn),分別過A、B作軸的垂線段,交橢圓點(diǎn),動點(diǎn)P滿足.(1)求動點(diǎn)P的軌跡方程;(2)設(shè)分別表示的面積,當(dāng)點(diǎn)P在軸的上方,點(diǎn)A在軸的下方時(shí),求+的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(-2,0),B(2,0),動點(diǎn)P與A、B兩點(diǎn)連線的斜率分別為,且滿足·="t" (t≠0且t≠-1).
(1)求動點(diǎn)P的軌跡C的方程;
(2)當(dāng)t<0時(shí),曲線C的兩焦點(diǎn)為F1,F(xiàn)2,若曲線C上存在點(diǎn)Q使得∠F1QF2=120O,
求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,已知拋物線的焦點(diǎn)為是拋物線上橫坐標(biāo)為8且位于軸上方的點(diǎn). 到拋物線準(zhǔn)線的距離等于10,過垂直于軸,垂足為的中點(diǎn)為為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線的方程;
(Ⅱ)過,垂足為,求點(diǎn)的坐標(biāo);
(Ⅲ)以為圓心,4為半徑作圓,點(diǎn)軸上的一個(gè)動點(diǎn),試討論直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.以=1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程為       (  )
A.    B.   C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,則該雙曲線的離心率為           (   )
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)F(0,3),且和直線相切的動圓圓心軌跡方程是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案