在約束條件
x≤3
x+y≥0
x-y+2≥0
下,則目標(biāo)函數(shù)z=x-2y的最小值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:先畫出滿足條件的平面區(qū)域,由z=x-2y得到y(tǒng)=
1
2
x-
z
2
,顯然y=
1
2
x-
z
2
過(3,5)時,Z取到最小值,代入求出即可.
解答: 解:畫出滿足約束條件
x≤3
x+y≥0
x-y+2≥0
的平面區(qū)域,
如圖示:
,
由z=x-2y得到y(tǒng)=
1
2
x-
z
2

∴當(dāng)y=
1
2
x-
z
2
過(3,5)時,-
z
2
取到最大值,
z取到最小值,
∴Z最小值=3-10=-7,
故答案為:-7.
點(diǎn)評:本題給出二元一次不等式組,求目標(biāo)函數(shù)的最小值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)a,使不等式f(x)<ax2對x∈(1,+∞)恒成立,若存在,求實(shí)數(shù)a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列條件:
(1)焦點(diǎn)在x軸上;
(2)焦點(diǎn)在y軸上;
(3)焦點(diǎn)到準(zhǔn)線的距離為4;
(4)通徑長為2; 
(5)拋物線上橫坐標(biāo)為2的點(diǎn)到焦點(diǎn)的距離為3.
能推出拋物線的標(biāo)準(zhǔn)方程為y2=4x的是
 
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
(x∈R,ω>0)
(1)求f(x)的值域;
(2)若f(x1)=f(x2)=0,且|x1-x2|的最小值為
π
2
,求f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),過F2且垂直于x軸的直線與橢圓交于A、B兩點(diǎn),若△ABF1是銳角三角形,則該橢圓離心率e的取值范圍是( 。
A、e>
2
-1
B、0<e<
2
-1
C、
2
-1<e<1
D、
2
-1<e<
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
、
b
滿足|
a
|=1,|
b
|=2
,且
a
b
的夾角為
π
3
,則
a
•(
a
+
b
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+b與以橢圓
x2
3
+
y2
4
=1的上焦點(diǎn)為焦點(diǎn),頂點(diǎn)在坐標(biāo)原點(diǎn)O的拋物線交于A、B兩點(diǎn),若△OAB是以角O為直角的三角形,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義
.
m1
m3
m2
m4
.
=m1m4-m2m3
,將函數(shù)f(x)=
.
sinx
1
cosx
3
.
的圖象向左平移ϕ(ϕ>0)個單位長度后,得到函數(shù)g(x),若g(x)為奇函數(shù),則ϕ的值可以是(  )
A、
π
6
B、
3
C、
π
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的正視圖與側(cè)視頻如圖所示,則該幾何體的俯視圖不可能是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案