已知函數(shù),.
(1)求函數(shù)的極值;(2)若恒成立,求實(shí)數(shù)的值;
(3)設(shè)有兩個極值點(diǎn)、(),求實(shí)數(shù)的取值范圍,并證明.

(1);(2);(3) 見解析。

解析試題分析:(1)先求的定義域,然后對求導(dǎo),令尋找極值點(diǎn),從而求出
極值;(2)構(gòu)造函數(shù),又,則只需恒成立,再證處取到最小值即可;(3)有兩個極值點(diǎn)等價于方程上有兩個不等的正根,由此可得的取值范圍,,由根與系數(shù)可知范圍為,代入上式得,利用導(dǎo)函數(shù)求的最小值即可。
試題解析:(1)的定義域是,.
,故當(dāng)x=1時,G(x)的極小值為0.
(2)令,則
所以,即恒成立的必要條件是
,由得:
當(dāng)時,由,
,即恒成立.
(3)由,得
有兩個極值點(diǎn)、等價于方程上有兩個不等的正根,
即:, 解得
,得,其中.
所以
設(shè),得,
所以,即.        
考點(diǎn):(1)利用導(dǎo)求函數(shù)的極值、最值;(2)一元二方程根的分布;(3)構(gòu)造函數(shù)解決與不等式有關(guān)問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (R).
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是函數(shù)的一個極值點(diǎn),其中
(1)的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時,函數(shù)的圖象上任意一點(diǎn)處的切線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)滿足:①在時有極值;②圖像過點(diǎn),且在該點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè)為正實(shí)數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極值,求函數(shù)以及的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)請問,是否存在實(shí)數(shù)使上恒成立?若存在,請求實(shí)數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時,
(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時,恒有

查看答案和解析>>

同步練習(xí)冊答案