3.已知函數(shù)f(x)是定義在R上不恒為0的函數(shù),且對于任意的實數(shù)a,b滿足f(2)=2,f(ab)=af(b)+bf(a),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),給出下列命題:
①f(0)=f(1);
②f(x)為奇函數(shù);
③數(shù)列{an}為等差數(shù)列;
④數(shù)列{bn}為等比數(shù)列.
其中正確的命題是①②③④.(寫出所有正確命題的序號)

分析 令a=b=0,a=b=1,可得f(0),f(1),可判斷①;令a=b=-1,求得f(-1),再由奇偶性的定義,可判斷②;
再由f(2)=2,運用已知等式,求得f(2n)=f(2•2n-1)=2f(2n-1)+2n=…=n•2n,可得數(shù)列{an}、數(shù)列{bn}的通項公式,即可判斷③④.

解答 解:∵取a=b=0,可得f(0)=0,
取a=b=1,可得f(1)=2f(1),即f(1)=0,
∴f(0)=f(1),
即①正確;
令a=b=-1,則f(1)=-f(-1)-f(-1)=0⇒f(-1)=0,
令a=-1,則f(-b)=-f(b)+bf(-1)=-f(b)⇒f(x)為奇函數(shù),
即②正確;
∵f(ab)=af(b)+bf(a),
∴f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)
=2f(2n-1)+2n=…=n•2n,
∴an=$\frac{f({2}^{n})}{{2}^{n}}$=n,bn=$\frac{f({2}^{n})}{n}$=2n,
即有③④正確.
故答案為:①②③④.

點評 本題考查抽象函數(shù)的函數(shù)值的求法,注意運用賦值法,考查函數(shù)的奇偶性的判斷,注意運用定義法,同時考查等差數(shù)列和等比數(shù)列的判定,注意運用運用通項公式,考查推理能力和運算能力,屬于中檔題和易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知正方體ABCD-A1B1C1D1的棱長為a.
(Ⅰ)求證:平面A1BC1∥平面AD1C;
(Ⅱ)求正方體夾在平面A1BC1與平面AD1C之間的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在數(shù)列{an}中,若an=3+33+35+…+32n+1,則an=( 。
A.$\frac{{3•({1-{3^n}})}}{1-3}$B.$\frac{{3•({1-{3^{2n+1}}})}}{1-3}$C.$\frac{{3•({1-{9^n}})}}{1-9}$D.$\frac{{3•({1-{9^{n+1}}})}}{1-9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若$\overrightarrow{AB}$=(3,x),$\overrightarrow{CD}$=(-2,6),$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若點P(x,y)在不等式組$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$所確定的區(qū)域內(nèi),則z=y-x的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知某離散型隨機變量X的分布列如表格,則m=$\frac{7}{12}$.
X123
P$\frac{1}{6}$$\frac{1}{4}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行程序框圖,若輸入a,b,i的值分別為6,8,0,則輸出a和i的值分別為( 。
A.2,4B.0,4C.2,3D.0,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,M為邊BC的中點,若$\overrightarrow{CM}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則m+n=( 。
A.1B.-1C.0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某地一天中6時至14時的溫度變化曲線近似滿足函數(shù)T=Asin(ωt+φ)+b(其中$\frac{π}{2}$<φ<π),6時至14時期間的溫度變化曲線如圖所示,它是上述函數(shù)的半個周期的圖象,那么這一天6時至14時溫差的最大值是20°C;圖中曲線對應(yīng)的函數(shù)解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

查看答案和解析>>

同步練習(xí)冊答案