已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的圖象在y軸上的截距為1,它在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,2)和(x0+3π,-2).
(1)試求f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
3
(縱坐標(biāo)不變),然后再將新的圖象向軸正方向平移
π
3
個(gè)單位,得到函數(shù)y=g(x)的圖象.寫出函數(shù)y=g(x)的解析式.
分析:(1)由已知中函數(shù)圖象在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,2)和(x0+3π,-2).我們易求出函數(shù)的最值及周期,進(jìn)而求出A,ω值,再由圖象在y軸上的截距為1,|?|<
π
2
,將(0,1)點(diǎn)代入可求出φ值,即可得到f(x)的解析式;
(2)根據(jù)函數(shù)圖象的周期變換及平移變換法則,結(jié)合(1)中函數(shù)的解析式,即可求出函數(shù)y=g(x)的解析式.
解答:解:(1)∵函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的圖象
在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,2)和(x0+3π,-2).
∴T=6π,即ω=
1
3
,A=2,
f(x)=2sin(
1
3
x+?)
,
又∵函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的圖象在y軸上的截距為1,
∴函數(shù)圖象過(guò)(0,1),
sin?=
1
2
,
|?|<
π
2

?=
π
6
,
f(x)=2sin(
x
3
+
π
6
)
;
(2)∵將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的
1
3
(縱坐標(biāo)不變),
然后再將新的圖象向軸正方向平移
π
3
個(gè)單位,
得到函數(shù)y=g(x)的圖象
g(x)=2sin[3•
(x-
π
3
)
3
+
π
6
]

整理得:g(x)=2sin(x-
π
6
)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換,函數(shù)y=Asin(ωx+φ)的解析式的求法,其中根據(jù)已知求出函數(shù)的最值,周期,向左平移量,特殊點(diǎn)等,進(jìn)而求出A,ω,φ值,得到函數(shù)的解析式是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案